Properties

Label 2.2.57.1-192.1-m5
Base field \(\Q(\sqrt{57}) \)
Conductor norm \( 192 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{57}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 14 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-14, -1, 1]))
 
gp: K = nfinit(Polrev([-14, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-14, -1, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-777147a-2545086\right){x}-725337972a-2375421816\)
sage: E = EllipticCurve([K([0,0]),K([-1,1]),K([0,0]),K([-2545086,-777147]),K([-2375421816,-725337972])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([-1,1]),Polrev([0,0]),Polrev([-2545086,-777147]),Polrev([-2375421816,-725337972])], K);
 
magma: E := EllipticCurve([K![0,0],K![-1,1],K![0,0],K![-2545086,-777147],K![-2375421816,-725337972]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((32a+104)\) = \((a-4)^{3}\cdot(a+3)^{3}\cdot(4a+13)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 192 \) = \(2^{3}\cdot2^{3}\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((3072)\) = \((a-4)^{10}\cdot(a+3)^{10}\cdot(4a+13)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 9437184 \) = \(2^{10}\cdot2^{10}\cdot3^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{28756228}{3} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{2981}{16} a - \frac{9737}{16} : \frac{5145}{64} a + \frac{16845}{64} : 1\right)$
Height \(3.1251901677238418100980288330339992874\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-187 a - 611 : 0 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 3.1251901677238418100980288330339992874 \)
Period: \( 2.8417542587507934505185738139717168448 \)
Tamagawa product: \( 8 \)  =  \(2\cdot2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 4.7052806493586878842382086491031178181 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a-4)\) \(2\) \(2\) \(III^{*}\) Additive \(1\) \(3\) \(10\) \(0\)
\((a+3)\) \(2\) \(2\) \(III^{*}\) Additive \(1\) \(3\) \(10\) \(0\)
\((4a+13)\) \(3\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 192.1-m consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 72.a2
\(\Q\) 8664.j2