Learn more

Refine search


Results (12 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
98.1-a1 98.1-a \(\Q(\sqrt{14}) \) \( 2 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $14.70884583$ $0.661753152$ 2.601420732 \( -\frac{548347731625}{1835008} \) \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 4773 a - 17896\) , \( 359516 a - 1345126\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(4773a-17896\right){x}+359516a-1345126$
98.1-a2 98.1-a \(\Q(\sqrt{14}) \) \( 2 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.634316204$ $5.955778371$ 2.601420732 \( -\frac{15625}{28} \) \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 13 a - 46\) , \( -88 a + 330\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(13a-46\right){x}-88a+330$
98.1-a3 98.1-a \(\Q(\sqrt{14}) \) \( 2 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.902948612$ $1.985259457$ 2.601420732 \( \frac{9938375}{21952} \) \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( -127 a + 479\) , \( 2208 a - 8259\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-127a+479\right){x}+2208a-8259$
98.1-a4 98.1-a \(\Q(\sqrt{14}) \) \( 2 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.451474306$ $1.985259457$ 2.601420732 \( \frac{4956477625}{941192} \) \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 993 a - 3721\) , \( 29312 a - 109675\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(993a-3721\right){x}+29312a-109675$
98.1-a5 98.1-a \(\Q(\sqrt{14}) \) \( 2 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.817158102$ $5.955778371$ 2.601420732 \( \frac{128787625}{98} \) \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 293 a - 1096\) , \( -4680 a + 17508\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(293a-1096\right){x}-4680a+17508$
98.1-a6 98.1-a \(\Q(\sqrt{14}) \) \( 2 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $7.354422918$ $0.661753152$ 2.601420732 \( \frac{2251439055699625}{25088} \) \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 76453 a - 286696\) , \( 22465628 a - 84053094\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(76453a-286696\right){x}+22465628a-84053094$
98.1-b1 98.1-b \(\Q(\sqrt{14}) \) \( 2 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $14.70884583$ $0.661753152$ 2.601420732 \( -\frac{548347731625}{1835008} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -4773 a - 17896\) , \( -359516 a - 1345126\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-4773a-17896\right){x}-359516a-1345126$
98.1-b2 98.1-b \(\Q(\sqrt{14}) \) \( 2 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.634316204$ $5.955778371$ 2.601420732 \( -\frac{15625}{28} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -13 a - 46\) , \( 88 a + 330\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-13a-46\right){x}+88a+330$
98.1-b3 98.1-b \(\Q(\sqrt{14}) \) \( 2 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.902948612$ $1.985259457$ 2.601420732 \( \frac{9938375}{21952} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 127 a + 479\) , \( -2208 a - 8259\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(127a+479\right){x}-2208a-8259$
98.1-b4 98.1-b \(\Q(\sqrt{14}) \) \( 2 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.451474306$ $1.985259457$ 2.601420732 \( \frac{4956477625}{941192} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -993 a - 3721\) , \( -29312 a - 109675\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-993a-3721\right){x}-29312a-109675$
98.1-b5 98.1-b \(\Q(\sqrt{14}) \) \( 2 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.817158102$ $5.955778371$ 2.601420732 \( \frac{128787625}{98} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -293 a - 1096\) , \( 4680 a + 17508\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-293a-1096\right){x}+4680a+17508$
98.1-b6 98.1-b \(\Q(\sqrt{14}) \) \( 2 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $7.354422918$ $0.661753152$ 2.601420732 \( \frac{2251439055699625}{25088} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -76453 a - 286696\) , \( -22465628 a - 84053094\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-76453a-286696\right){x}-22465628a-84053094$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.