Properties

Label 2.2.56.1-56.1-d4
Base field \(\Q(\sqrt{14}) \)
Conductor norm \( 56 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 8 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{14}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 14 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-14, 0, 1]))
 
gp: K = nfinit(Polrev([-14, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-14, 0, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-5{x}-11\)
sage: E = EllipticCurve([K([0,1]),K([1,0]),K([0,1]),K([-5,0]),K([-11,0])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([1,0]),Polrev([0,1]),Polrev([-5,0]),Polrev([-11,0])], K);
 
magma: E := EllipticCurve([K![0,1],K![1,0],K![0,1],K![-5,0],K![-11,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z \oplus \Z/{2}\Z \oplus \Z/{4}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-\frac{7}{169} a - \frac{475}{169} : \frac{2045}{2197} a - \frac{126}{2197} : 1\right)$$1.4805337898492731744697795968857835225$$\infty$
$\left(\frac{7}{169} a - \frac{475}{169} : \frac{1933}{2197} a - \frac{1400}{2197} : 1\right)$$1.4805337898492731744697795968857835225$$\infty$
$\left(-\frac{5}{2} : \frac{3}{4} a : 1\right)$$0$$2$
$\left(-a + 1 : -3 a + 14 : 1\right)$$0$$4$

Invariants

Conductor: $\frak{N}$ = \((2a)\) = \((-a+4)^{3}\cdot(-2a+7)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 56 \) = \(2^{3}\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $784$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((784)\) = \((-a+4)^{8}\cdot(-2a+7)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 614656 \) = \(2^{8}\cdot7^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{740772}{49} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 2 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(2\)
Regulator: $\mathrm{Reg}(E/K)$ \( 2.0227095969505290132550084317128574114 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 8.0908383878021160530200337268514296456 \)
Global period: $\Omega(E/K)$ \( 10.545174114907622496997986618182212107 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 16 \)  =  \(2^{2}\cdot2^{2}\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(8\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 2.8503177441011686065450864444986300260 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 2.850317744 \approx L^{(2)}(E/K,1)/2! \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 10.545174 \cdot 8.090838 \cdot 16 } { {8^2 \cdot 7.483315} } \approx 2.850317744$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 2 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((-a+4)\) \(2\) \(4\) \(I_{1}^{*}\) Additive \(-1\) \(3\) \(8\) \(0\)
\((-2a+7)\) \(7\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 56.1-d consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 392.d3
\(\Q\) 448.e3