Properties

Label 2.2.56.1-5.1-b1
Base field \(\Q(\sqrt{14}) \)
Conductor norm \( 5 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{14}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 14 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-14, 0, 1]))
 
gp: K = nfinit(Polrev([-14, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-14, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(-8a+30\right){x}+27a-101\)
sage: E = EllipticCurve([K([1,0]),K([-1,0]),K([0,0]),K([30,-8]),K([-101,27])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([-1,0]),Polrev([0,0]),Polrev([30,-8]),Polrev([-101,27])], K);
 
magma: E := EllipticCurve([K![1,0],K![-1,0],K![0,0],K![30,-8],K![-101,27]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a+3)\) = \((-a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 5 \) = \(5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-387a-379)\) = \((-a+3)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -1953125 \) = \(-5^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{534684321}{1953125} a + \frac{3601913643}{1953125} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a + 4 : 4 a - 15 : 1\right)$
Height \(0.053182667108617505815594736083017865223\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.053182667108617505815594736083017865223 \)
Period: \( 11.356795185579035635643715880936268135 \)
Tamagawa product: \( 9 \)
Torsion order: \(1\)
Leading coefficient: \( 1.4527952075979358676726592492869622704 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+3)\) \(5\) \(9\) \(I_{9}\) Split multiplicative \(-1\) \(1\) \(9\) \(9\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3Nn

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 5.1-b consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.