Base field \(\Q(\sqrt{14}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 14 \); class number \(1\).
Elliptic curves in class 224.1-f over \(\Q(\sqrt{14}) \)
Isogeny class 224.1-f contains 2 curves linked by isogenies of degree 2.
Curve label | Weierstrass Coefficients |
---|---|
224.1-f1 | \( \bigl[0\) , \( 1\) , \( 0\) , \( 2\) , \( 0\bigr] \) |
224.1-f2 | \( \bigl[a\) , \( -a + 1\) , \( a\) , \( -253 a - 931\) , \( -2430 a - 9075\bigr] \) |
Rank
Rank: \( 2 \)Isogeny matrix
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)