Properties

Base field \(\Q(\sqrt{14}) \)
Label 2.2.56.1-224.1-f
Conductor 224.1
Rank \( 2 \)

Related objects

Learn more

Base field \(\Q(\sqrt{14}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 14 \); class number \(1\).

Elliptic curves in class 224.1-f over \(\Q(\sqrt{14}) \)

Isogeny class 224.1-f contains 2 curves linked by isogenies of degree 2.

Curve label Weierstrass Coefficients
224.1-f1 \( \bigl[0\) , \( 1\) , \( 0\) , \( 2\) , \( 0\bigr] \)
224.1-f2 \( \bigl[a\) , \( -a + 1\) , \( a\) , \( -253 a - 931\) , \( -2430 a - 9075\bigr] \)

Rank

Rank: \( 2 \)

Isogeny matrix

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph