Properties

Base field \(\Q(\sqrt{14}) \)
Label 2.2.56.1-16.1-a
Conductor 16.1
Rank not recorded

Related objects

Learn more about

Base field \(\Q(\sqrt{14}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 14 \); class number \(1\).

Elliptic curves in class 16.1-a over \(\Q(\sqrt{14}) \)

Isogeny class 16.1-a contains 4 curves linked by isogenies of degrees dividing 14.

Curve label Weierstrass Coefficients
16.1-a1 \( \bigl[a\) , \( 1\) , \( a\) , \( -5 a - 19\) , \( 7 a + 26\bigr] \)
16.1-a2 \( \bigl[a\) , \( 1\) , \( a\) , \( 5 a - 19\) , \( -7 a + 26\bigr] \)
16.1-a3 \( \bigl[a\) , \( 1\) , \( a\) , \( -85 a - 319\) , \( 699 a + 2614\bigr] \)
16.1-a4 \( \bigl[a\) , \( 1\) , \( a\) , \( 85 a - 319\) , \( -699 a + 2614\bigr] \)

Rank

Rank not yet determined.

Isogeny matrix

\(\left(\begin{array}{rrrr} 1 & 7 & 2 & 14 \\ 7 & 1 & 14 & 2 \\ 2 & 14 & 1 & 7 \\ 14 & 2 & 7 & 1 \end{array}\right)\)

Isogeny graph