Properties

Label 2.2.56.1-144.1-f4
Base field \(\Q(\sqrt{14}) \)
Conductor norm \( 144 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 8 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{14}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 14 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-14, 0, 1]))
 
gp: K = nfinit(Polrev([-14, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-14, 0, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-733a-2720\right){x}+19624a+73447\)
sage: E = EllipticCurve([K([0,1]),K([1,-1]),K([0,0]),K([-2720,-733]),K([73447,19624])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([1,-1]),Polrev([0,0]),Polrev([-2720,-733]),Polrev([73447,19624])], K);
 
magma: E := EllipticCurve([K![0,1],K![1,-1],K![0,0],K![-2720,-733],K![73447,19624]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((12)\) = \((-a+4)^{4}\cdot(3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 144 \) = \(2^{4}\cdot9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1296)\) = \((-a+4)^{8}\cdot(3)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1679616 \) = \(2^{8}\cdot9^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1556068}{81} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(2\)
Generators $\left(-2 a - \frac{41}{4} : -\frac{481}{8} a - \frac{1841}{8} : 1\right)$ $\left(\frac{19}{4} a + \frac{241}{16} : -\frac{251}{16} a - \frac{4081}{64} : 1\right)$
Heights \(1.3242647311834403315159924736656325481\) \(2.0649752367953244401137254400794604351\)
Torsion structure: \(\Z/2\Z\oplus\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(5 a + 16 : -8 a - 35 : 1\right)$ $\left(a + 1 : -47 a - 181 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 2 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(2\)
Regulator: \( 2.5929144509875476566860852402002271316 \)
Period: \( 22.734034070006347604148590511773734758 \)
Tamagawa product: \( 8 \)  =  \(2\cdot2^{2}\)
Torsion order: \(8\)
Leading coefficient: \( 3.9385891983142790376412885342643247013 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+4)\) \(2\) \(2\) \(I_0^{*}\) Additive \(-1\) \(4\) \(8\) \(0\)
\((3)\) \(9\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 144.1-f consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 48.a3
\(\Q\) 9408.h3