Elliptic curves in class 14.1-b over \(\Q(\sqrt{14}) \)
Isogeny class 14.1-b contains
6 curves linked by isogenies of
degrees dividing 18.
Curve label |
Weierstrass Coefficients |
14.1-b1
| \( \bigl[1\) , \( a - 1\) , \( 0\) , \( 20462 a - 76559\) , \( -3121544 a + 11679749\bigr] \)
|
14.1-b2
| \( \bigl[1\) , \( a - 1\) , \( 0\) , \( 62 a - 229\) , \( 960 a - 3591\bigr] \)
|
14.1-b3
| \( \bigl[1\) , \( a - 1\) , \( 0\) , \( -538 a + 2016\) , \( -21216 a + 79384\bigr] \)
|
14.1-b4
| \( \bigl[1\) , \( a - 1\) , \( 0\) , \( 4262 a - 15944\) , \( -246560 a + 922544\bigr] \)
|
14.1-b5
| \( \bigl[1\) , \( a - 1\) , \( 0\) , \( 1262 a - 4719\) , \( 45312 a - 169541\bigr] \)
|
14.1-b6
| \( \bigl[1\) , \( a - 1\) , \( 0\) , \( 327662 a - 1225999\) , \( -197976456 a + 740760069\bigr] \)
|
Rank: \( 0 \)
\(\left(\begin{array}{rrrrrr}
1 & 9 & 3 & 6 & 18 & 2 \\
9 & 1 & 3 & 6 & 2 & 18 \\
3 & 3 & 1 & 2 & 6 & 6 \\
6 & 6 & 2 & 1 & 3 & 3 \\
18 & 2 & 6 & 3 & 1 & 9 \\
2 & 18 & 6 & 3 & 9 & 1
\end{array}\right)\)