Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
14.1-a1 |
14.1-a |
$6$ |
$18$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
14.1 |
\( 2 \cdot 7 \) |
\( 2^{36} \cdot 7^{2} \) |
$1.29349$ |
$(-a+4), (-2a+7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2^{2} \) |
$12.63051067$ |
$0.436190660$ |
1.472425245 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -171\) , \( -874\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-171{x}-874$ |
14.1-a2 |
14.1-a |
$6$ |
$18$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
14.1 |
\( 2 \cdot 7 \) |
\( 2^{4} \cdot 7^{2} \) |
$1.29349$ |
$(-a+4), (-2a+7)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{2} \) |
$1.403390075$ |
$35.33144352$ |
1.472425245 |
\( -\frac{15625}{28} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -1\) , \( 0\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}$ |
14.1-a3 |
14.1-a |
$6$ |
$18$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
14.1 |
\( 2 \cdot 7 \) |
\( 2^{12} \cdot 7^{6} \) |
$1.29349$ |
$(-a+4), (-2a+7)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3Cs.1.1 |
$1$ |
\( 2^{2} \cdot 3 \) |
$4.210170225$ |
$3.925715946$ |
1.472425245 |
\( \frac{9938375}{21952} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( 4\) , \( -6\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+4{x}-6$ |
14.1-a4 |
14.1-a |
$6$ |
$18$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
14.1 |
\( 2 \cdot 7 \) |
\( 2^{6} \cdot 7^{12} \) |
$1.29349$ |
$(-a+4), (-2a+7)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3Cs.1.1 |
$1$ |
\( 2^{3} \cdot 3 \) |
$2.105085112$ |
$3.925715946$ |
1.472425245 |
\( \frac{4956477625}{941192} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -36\) , \( -70\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-36{x}-70$ |
14.1-a5 |
14.1-a |
$6$ |
$18$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
14.1 |
\( 2 \cdot 7 \) |
\( 2^{2} \cdot 7^{4} \) |
$1.29349$ |
$(-a+4), (-2a+7)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{3} \) |
$0.701695037$ |
$35.33144352$ |
1.472425245 |
\( \frac{128787625}{98} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -11\) , \( 12\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-11{x}+12$ |
14.1-a6 |
14.1-a |
$6$ |
$18$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
14.1 |
\( 2 \cdot 7 \) |
\( 2^{18} \cdot 7^{4} \) |
$1.29349$ |
$(-a+4), (-2a+7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2^{3} \) |
$6.315255337$ |
$0.436190660$ |
1.472425245 |
\( \frac{2251439055699625}{25088} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -2731\) , \( -55146\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-2731{x}-55146$ |
14.1-b1 |
14.1-b |
$6$ |
$18$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
14.1 |
\( 2 \cdot 7 \) |
\( 2^{36} \cdot 7^{2} \) |
$1.29349$ |
$(-a+4), (-2a+7)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{2} \) |
$1$ |
$7.027708105$ |
0.939116998 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[1\) , \( a - 1\) , \( 0\) , \( 20462 a - 76559\) , \( -3121544 a + 11679749\bigr] \) |
${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(20462a-76559\right){x}-3121544a+11679749$ |
14.1-b2 |
14.1-b |
$6$ |
$18$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
14.1 |
\( 2 \cdot 7 \) |
\( 2^{4} \cdot 7^{2} \) |
$1.29349$ |
$(-a+4), (-2a+7)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{2} \) |
$1$ |
$7.027708105$ |
0.939116998 |
\( -\frac{15625}{28} \) |
\( \bigl[1\) , \( a - 1\) , \( 0\) , \( 62 a - 229\) , \( 960 a - 3591\bigr] \) |
${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(62a-229\right){x}+960a-3591$ |
14.1-b3 |
14.1-b |
$6$ |
$18$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
14.1 |
\( 2 \cdot 7 \) |
\( 2^{12} \cdot 7^{6} \) |
$1.29349$ |
$(-a+4), (-2a+7)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3Cs |
$1$ |
\( 2^{2} \) |
$1$ |
$7.027708105$ |
0.939116998 |
\( \frac{9938375}{21952} \) |
\( \bigl[1\) , \( a - 1\) , \( 0\) , \( -538 a + 2016\) , \( -21216 a + 79384\bigr] \) |
${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-538a+2016\right){x}-21216a+79384$ |
14.1-b4 |
14.1-b |
$6$ |
$18$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
14.1 |
\( 2 \cdot 7 \) |
\( 2^{6} \cdot 7^{12} \) |
$1.29349$ |
$(-a+4), (-2a+7)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3Cs |
$1$ |
\( 2^{2} \) |
$1$ |
$7.027708105$ |
0.939116998 |
\( \frac{4956477625}{941192} \) |
\( \bigl[1\) , \( a - 1\) , \( 0\) , \( 4262 a - 15944\) , \( -246560 a + 922544\bigr] \) |
${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(4262a-15944\right){x}-246560a+922544$ |
14.1-b5 |
14.1-b |
$6$ |
$18$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
14.1 |
\( 2 \cdot 7 \) |
\( 2^{2} \cdot 7^{4} \) |
$1.29349$ |
$(-a+4), (-2a+7)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{2} \) |
$1$ |
$7.027708105$ |
0.939116998 |
\( \frac{128787625}{98} \) |
\( \bigl[1\) , \( a - 1\) , \( 0\) , \( 1262 a - 4719\) , \( 45312 a - 169541\bigr] \) |
${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(1262a-4719\right){x}+45312a-169541$ |
14.1-b6 |
14.1-b |
$6$ |
$18$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
14.1 |
\( 2 \cdot 7 \) |
\( 2^{18} \cdot 7^{4} \) |
$1.29349$ |
$(-a+4), (-2a+7)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{2} \) |
$1$ |
$7.027708105$ |
0.939116998 |
\( \frac{2251439055699625}{25088} \) |
\( \bigl[1\) , \( a - 1\) , \( 0\) , \( 327662 a - 1225999\) , \( -197976456 a + 740760069\bigr] \) |
${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(327662a-1225999\right){x}-197976456a+740760069$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.