Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
112.1-a1 |
112.1-a |
$6$ |
$18$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
112.1 |
\( 2^{4} \cdot 7 \) |
\( 2^{48} \cdot 7^{2} \) |
$2.17539$ |
$(-a+4), (-2a+7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B |
$9$ |
\( 2^{3} \) |
$3.507207167$ |
$0.218095330$ |
3.679732717 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( -685\) , \( -7674\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-685{x}-7674$ |
112.1-a2 |
112.1-a |
$6$ |
$18$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
112.1 |
\( 2^{4} \cdot 7 \) |
\( 2^{16} \cdot 7^{2} \) |
$2.17539$ |
$(-a+4), (-2a+7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{3} \) |
$0.389689685$ |
$17.66572176$ |
3.679732717 |
\( -\frac{15625}{28} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( -5\) , \( -2\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-5{x}-2$ |
112.1-a3 |
112.1-a |
$6$ |
$18$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
112.1 |
\( 2^{4} \cdot 7 \) |
\( 2^{24} \cdot 7^{6} \) |
$2.17539$ |
$(-a+4), (-2a+7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3Cs |
$1$ |
\( 2^{3} \cdot 3 \) |
$1.169069055$ |
$1.962857973$ |
3.679732717 |
\( \frac{9938375}{21952} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( 15\) , \( -30\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+15{x}-30$ |
112.1-a4 |
112.1-a |
$6$ |
$18$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
112.1 |
\( 2^{4} \cdot 7 \) |
\( 2^{18} \cdot 7^{12} \) |
$2.17539$ |
$(-a+4), (-2a+7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3Cs |
$1$ |
\( 2^{4} \cdot 3 \) |
$0.584534527$ |
$1.962857973$ |
3.679732717 |
\( \frac{4956477625}{941192} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( -145\) , \( -702\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-145{x}-702$ |
112.1-a5 |
112.1-a |
$6$ |
$18$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
112.1 |
\( 2^{4} \cdot 7 \) |
\( 2^{14} \cdot 7^{4} \) |
$2.17539$ |
$(-a+4), (-2a+7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{4} \) |
$0.194844842$ |
$17.66572176$ |
3.679732717 |
\( \frac{128787625}{98} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( -45\) , \( 54\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-45{x}+54$ |
112.1-a6 |
112.1-a |
$6$ |
$18$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
112.1 |
\( 2^{4} \cdot 7 \) |
\( 2^{30} \cdot 7^{4} \) |
$2.17539$ |
$(-a+4), (-2a+7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B |
$9$ |
\( 2^{4} \) |
$1.753603583$ |
$0.218095330$ |
3.679732717 |
\( \frac{2251439055699625}{25088} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( -10925\) , \( -452090\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-10925{x}-452090$ |
112.1-b1 |
112.1-b |
$6$ |
$8$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
112.1 |
\( 2^{4} \cdot 7 \) |
\( - 2^{11} \cdot 7 \) |
$2.17539$ |
$(-a+4), (-2a+7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$64$ |
\( 2 \) |
$1$ |
$0.659073382$ |
2.818316330 |
\( -\frac{39775849362076815}{7} a + 21261085797246696 \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -8820 a - 32996\) , \( -939060 a - 3513640\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-8820a-32996\right){x}-939060a-3513640$ |
112.1-b2 |
112.1-b |
$6$ |
$8$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
112.1 |
\( 2^{4} \cdot 7 \) |
\( 2^{4} \cdot 7^{2} \) |
$2.17539$ |
$(-a+4), (-2a+7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$4$ |
\( 2 \) |
$1$ |
$10.54517411$ |
2.818316330 |
\( \frac{432}{7} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -30 a + 119\) , \( 854 a - 3192\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-30a+119\right){x}+854a-3192$ |
112.1-b3 |
112.1-b |
$6$ |
$8$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
112.1 |
\( 2^{4} \cdot 7 \) |
\( 2^{10} \cdot 7^{8} \) |
$2.17539$ |
$(-a+4), (-2a+7)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1$ |
$10.54517411$ |
2.818316330 |
\( \frac{11090466}{2401} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( 1770 a - 6616\) , \( -59376 a + 222168\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(1770a-6616\right){x}-59376a+222168$ |
112.1-b4 |
112.1-b |
$6$ |
$8$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
112.1 |
\( 2^{4} \cdot 7 \) |
\( 2^{8} \cdot 7^{4} \) |
$2.17539$ |
$(-a+4), (-2a+7)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$4$ |
\( 2^{3} \) |
$1$ |
$10.54517411$ |
2.818316330 |
\( \frac{740772}{49} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -570 a - 2126\) , \( -14340 a - 53652\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-570a-2126\right){x}-14340a-53652$ |
112.1-b5 |
112.1-b |
$6$ |
$8$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
112.1 |
\( 2^{4} \cdot 7 \) |
\( 2^{10} \cdot 7^{2} \) |
$2.17539$ |
$(-a+4), (-2a+7)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$16$ |
\( 2^{3} \) |
$1$ |
$2.636293528$ |
2.818316330 |
\( \frac{1443468546}{7} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( 8970 a - 33556\) , \( 907960 a - 3397272\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(8970a-33556\right){x}+907960a-3397272$ |
112.1-b6 |
112.1-b |
$6$ |
$8$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
112.1 |
\( 2^{4} \cdot 7 \) |
\( - 2^{11} \cdot 7 \) |
$2.17539$ |
$(-a+4), (-2a+7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$64$ |
\( 2 \) |
$1$ |
$0.659073382$ |
2.818316330 |
\( \frac{39775849362076815}{7} a + 21261085797246696 \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( 8820 a - 32996\) , \( 939060 a - 3513640\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(8820a-32996\right){x}+939060a-3513640$ |
112.1-c1 |
112.1-c |
$2$ |
$2$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
112.1 |
\( 2^{4} \cdot 7 \) |
\( 2^{8} \cdot 7^{2} \) |
$2.17539$ |
$(-a+4), (-2a+7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$4$ |
\( 2^{2} \) |
$1$ |
$7.189921948$ |
3.843174938 |
\( -\frac{4}{7} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( 2\) , \( 0\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+2{x}$ |
112.1-c2 |
112.1-c |
$2$ |
$2$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
112.1 |
\( 2^{4} \cdot 7 \) |
\( 2^{10} \cdot 7^{4} \) |
$2.17539$ |
$(-a+4), (-2a+7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$7.189921948$ |
3.843174938 |
\( \frac{3543122}{49} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -8\) , \( -20\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}-8{x}-20$ |
112.1-d1 |
112.1-d |
$2$ |
$2$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
112.1 |
\( 2^{4} \cdot 7 \) |
\( 2^{8} \cdot 7^{2} \) |
$2.17539$ |
$(-a+4), (-2a+7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.239919898$ |
$22.75712104$ |
1.459215960 |
\( -\frac{4}{7} \) |
\( \bigl[a\) , \( a + 1\) , \( 0\) , \( 13 a - 26\) , \( -1826 a + 6853\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(13a-26\right){x}-1826a+6853$ |
112.1-d2 |
112.1-d |
$2$ |
$2$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
112.1 |
\( 2^{4} \cdot 7 \) |
\( 2^{10} \cdot 7^{4} \) |
$2.17539$ |
$(-a+4), (-2a+7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.119959949$ |
$22.75712104$ |
1.459215960 |
\( \frac{3543122}{49} \) |
\( \bigl[a\) , \( a + 1\) , \( 0\) , \( 1213 a - 4516\) , \( -43476 a + 162693\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(1213a-4516\right){x}-43476a+162693$ |
112.1-e1 |
112.1-e |
$6$ |
$8$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
112.1 |
\( 2^{4} \cdot 7 \) |
\( - 2^{11} \cdot 7 \) |
$2.17539$ |
$(-a+4), (-2a+7)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$5.573908667$ |
$12.23735606$ |
2.278732990 |
\( -\frac{39775849362076815}{7} a + 21261085797246696 \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( 150 a - 628\) , \( -1868 a + 7140\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(150a-628\right){x}-1868a+7140$ |
112.1-e2 |
112.1-e |
$6$ |
$8$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
112.1 |
\( 2^{4} \cdot 7 \) |
\( 2^{4} \cdot 7^{2} \) |
$2.17539$ |
$(-a+4), (-2a+7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$0.696738583$ |
$24.47471212$ |
2.278732990 |
\( \frac{432}{7} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( 7\) , \( 4\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+7{x}+4$ |
112.1-e3 |
112.1-e |
$6$ |
$8$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
112.1 |
\( 2^{4} \cdot 7 \) |
\( 2^{10} \cdot 7^{8} \) |
$2.17539$ |
$(-a+4), (-2a+7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.696738583$ |
$6.118678030$ |
2.278732990 |
\( \frac{11090466}{2401} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -8\) , \( -36\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}-8{x}-36$ |
112.1-e4 |
112.1-e |
$6$ |
$8$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
112.1 |
\( 2^{4} \cdot 7 \) |
\( 2^{8} \cdot 7^{4} \) |
$2.17539$ |
$(-a+4), (-2a+7)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{2} \) |
$1.393477166$ |
$24.47471212$ |
2.278732990 |
\( \frac{740772}{49} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( 2\) , \( 0\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+2{x}$ |
112.1-e5 |
112.1-e |
$6$ |
$8$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
112.1 |
\( 2^{4} \cdot 7 \) |
\( 2^{10} \cdot 7^{2} \) |
$2.17539$ |
$(-a+4), (-2a+7)$ |
$1$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$2.786954333$ |
$24.47471212$ |
2.278732990 |
\( \frac{1443468546}{7} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -68\) , \( 140\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}-68{x}+140$ |
112.1-e6 |
112.1-e |
$6$ |
$8$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
112.1 |
\( 2^{4} \cdot 7 \) |
\( - 2^{11} \cdot 7 \) |
$2.17539$ |
$(-a+4), (-2a+7)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$5.573908667$ |
$12.23735606$ |
2.278732990 |
\( \frac{39775849362076815}{7} a + 21261085797246696 \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -150 a - 628\) , \( 1868 a + 7140\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-150a-628\right){x}+1868a+7140$ |
112.1-f1 |
112.1-f |
$6$ |
$18$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
112.1 |
\( 2^{4} \cdot 7 \) |
\( 2^{48} \cdot 7^{2} \) |
$2.17539$ |
$(-a+4), (-2a+7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{3} \) |
$1$ |
$3.513854052$ |
0.939116998 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[a\) , \( -a + 1\) , \( 0\) , \( 81847 a - 306244\) , \( -24502404 a + 91679601\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(81847a-306244\right){x}-24502404a+91679601$ |
112.1-f2 |
112.1-f |
$6$ |
$18$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
112.1 |
\( 2^{4} \cdot 7 \) |
\( 2^{16} \cdot 7^{2} \) |
$2.17539$ |
$(-a+4), (-2a+7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{3} \) |
$1$ |
$3.513854052$ |
0.939116998 |
\( -\frac{15625}{28} \) |
\( \bigl[a\) , \( -a + 1\) , \( 0\) , \( 247 a - 924\) , \( 9108 a - 34079\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(247a-924\right){x}+9108a-34079$ |
112.1-f3 |
112.1-f |
$6$ |
$18$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
112.1 |
\( 2^{4} \cdot 7 \) |
\( 2^{24} \cdot 7^{6} \) |
$2.17539$ |
$(-a+4), (-2a+7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3Cs |
$1$ |
\( 2^{3} \) |
$1$ |
$3.513854052$ |
0.939116998 |
\( \frac{9938375}{21952} \) |
\( \bigl[a\) , \( -a + 1\) , \( 0\) , \( -2153 a + 8056\) , \( -182080 a + 681281\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-2153a+8056\right){x}-182080a+681281$ |
112.1-f4 |
112.1-f |
$6$ |
$18$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
112.1 |
\( 2^{4} \cdot 7 \) |
\( 2^{18} \cdot 7^{12} \) |
$2.17539$ |
$(-a+4), (-2a+7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3Cs |
$1$ |
\( 2^{3} \) |
$1$ |
$3.513854052$ |
0.939116998 |
\( \frac{4956477625}{941192} \) |
\( \bigl[a\) , \( -a + 1\) , \( 0\) , \( 17047 a - 63784\) , \( -1874592 a + 7014081\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(17047a-63784\right){x}-1874592a+7014081$ |
112.1-f5 |
112.1-f |
$6$ |
$18$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
112.1 |
\( 2^{4} \cdot 7 \) |
\( 2^{14} \cdot 7^{4} \) |
$2.17539$ |
$(-a+4), (-2a+7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{3} \) |
$1$ |
$3.513854052$ |
0.939116998 |
\( \frac{128787625}{98} \) |
\( \bigl[a\) , \( -a + 1\) , \( 0\) , \( 5047 a - 18884\) , \( 391484 a - 1464799\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(5047a-18884\right){x}+391484a-1464799$ |
112.1-f6 |
112.1-f |
$6$ |
$18$ |
\(\Q(\sqrt{14}) \) |
$2$ |
$[2, 0]$ |
112.1 |
\( 2^{4} \cdot 7 \) |
\( 2^{30} \cdot 7^{4} \) |
$2.17539$ |
$(-a+4), (-2a+7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{3} \) |
$1$ |
$3.513854052$ |
0.939116998 |
\( \frac{2251439055699625}{25088} \) |
\( \bigl[a\) , \( -a + 1\) , \( 0\) , \( 1310647 a - 4904004\) , \( -1576286340 a + 5897923441\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(1310647a-4904004\right){x}-1576286340a+5897923441$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.