Learn more

Refine search


Results (28 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
112.1-a1 112.1-a \(\Q(\sqrt{14}) \) \( 2^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.507207167$ $0.218095330$ 3.679732717 \( -\frac{548347731625}{1835008} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -685\) , \( -7674\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-685{x}-7674$
112.1-a2 112.1-a \(\Q(\sqrt{14}) \) \( 2^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.389689685$ $17.66572176$ 3.679732717 \( -\frac{15625}{28} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -5\) , \( -2\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-5{x}-2$
112.1-a3 112.1-a \(\Q(\sqrt{14}) \) \( 2^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.169069055$ $1.962857973$ 3.679732717 \( \frac{9938375}{21952} \) \( \bigl[a\) , \( 0\) , \( a\) , \( 15\) , \( -30\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+15{x}-30$
112.1-a4 112.1-a \(\Q(\sqrt{14}) \) \( 2^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.584534527$ $1.962857973$ 3.679732717 \( \frac{4956477625}{941192} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -145\) , \( -702\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-145{x}-702$
112.1-a5 112.1-a \(\Q(\sqrt{14}) \) \( 2^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.194844842$ $17.66572176$ 3.679732717 \( \frac{128787625}{98} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -45\) , \( 54\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-45{x}+54$
112.1-a6 112.1-a \(\Q(\sqrt{14}) \) \( 2^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.753603583$ $0.218095330$ 3.679732717 \( \frac{2251439055699625}{25088} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -10925\) , \( -452090\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-10925{x}-452090$
112.1-b1 112.1-b \(\Q(\sqrt{14}) \) \( 2^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.659073382$ 2.818316330 \( -\frac{39775849362076815}{7} a + 21261085797246696 \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -8820 a - 32996\) , \( -939060 a - 3513640\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-8820a-32996\right){x}-939060a-3513640$
112.1-b2 112.1-b \(\Q(\sqrt{14}) \) \( 2^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.54517411$ 2.818316330 \( \frac{432}{7} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -30 a + 119\) , \( 854 a - 3192\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-30a+119\right){x}+854a-3192$
112.1-b3 112.1-b \(\Q(\sqrt{14}) \) \( 2^{4} \cdot 7 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $10.54517411$ 2.818316330 \( \frac{11090466}{2401} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 1770 a - 6616\) , \( -59376 a + 222168\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(1770a-6616\right){x}-59376a+222168$
112.1-b4 112.1-b \(\Q(\sqrt{14}) \) \( 2^{4} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.54517411$ 2.818316330 \( \frac{740772}{49} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -570 a - 2126\) , \( -14340 a - 53652\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-570a-2126\right){x}-14340a-53652$
112.1-b5 112.1-b \(\Q(\sqrt{14}) \) \( 2^{4} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.636293528$ 2.818316330 \( \frac{1443468546}{7} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 8970 a - 33556\) , \( 907960 a - 3397272\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(8970a-33556\right){x}+907960a-3397272$
112.1-b6 112.1-b \(\Q(\sqrt{14}) \) \( 2^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.659073382$ 2.818316330 \( \frac{39775849362076815}{7} a + 21261085797246696 \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 8820 a - 32996\) , \( 939060 a - 3513640\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(8820a-32996\right){x}+939060a-3513640$
112.1-c1 112.1-c \(\Q(\sqrt{14}) \) \( 2^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $7.189921948$ 3.843174938 \( -\frac{4}{7} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 2\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+2{x}$
112.1-c2 112.1-c \(\Q(\sqrt{14}) \) \( 2^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $7.189921948$ 3.843174938 \( \frac{3543122}{49} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -8\) , \( -20\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-8{x}-20$
112.1-d1 112.1-d \(\Q(\sqrt{14}) \) \( 2^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.239919898$ $22.75712104$ 1.459215960 \( -\frac{4}{7} \) \( \bigl[a\) , \( a + 1\) , \( 0\) , \( 13 a - 26\) , \( -1826 a + 6853\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(13a-26\right){x}-1826a+6853$
112.1-d2 112.1-d \(\Q(\sqrt{14}) \) \( 2^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.119959949$ $22.75712104$ 1.459215960 \( \frac{3543122}{49} \) \( \bigl[a\) , \( a + 1\) , \( 0\) , \( 1213 a - 4516\) , \( -43476 a + 162693\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(1213a-4516\right){x}-43476a+162693$
112.1-e1 112.1-e \(\Q(\sqrt{14}) \) \( 2^{4} \cdot 7 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $5.573908667$ $12.23735606$ 2.278732990 \( -\frac{39775849362076815}{7} a + 21261085797246696 \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 150 a - 628\) , \( -1868 a + 7140\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(150a-628\right){x}-1868a+7140$
112.1-e2 112.1-e \(\Q(\sqrt{14}) \) \( 2^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.696738583$ $24.47471212$ 2.278732990 \( \frac{432}{7} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 7\) , \( 4\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+7{x}+4$
112.1-e3 112.1-e \(\Q(\sqrt{14}) \) \( 2^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.696738583$ $6.118678030$ 2.278732990 \( \frac{11090466}{2401} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -8\) , \( -36\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-8{x}-36$
112.1-e4 112.1-e \(\Q(\sqrt{14}) \) \( 2^{4} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.393477166$ $24.47471212$ 2.278732990 \( \frac{740772}{49} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 2\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+2{x}$
112.1-e5 112.1-e \(\Q(\sqrt{14}) \) \( 2^{4} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $2.786954333$ $24.47471212$ 2.278732990 \( \frac{1443468546}{7} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -68\) , \( 140\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-68{x}+140$
112.1-e6 112.1-e \(\Q(\sqrt{14}) \) \( 2^{4} \cdot 7 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $5.573908667$ $12.23735606$ 2.278732990 \( \frac{39775849362076815}{7} a + 21261085797246696 \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -150 a - 628\) , \( 1868 a + 7140\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-150a-628\right){x}+1868a+7140$
112.1-f1 112.1-f \(\Q(\sqrt{14}) \) \( 2^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.513854052$ 0.939116998 \( -\frac{548347731625}{1835008} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( 81847 a - 306244\) , \( -24502404 a + 91679601\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(81847a-306244\right){x}-24502404a+91679601$
112.1-f2 112.1-f \(\Q(\sqrt{14}) \) \( 2^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.513854052$ 0.939116998 \( -\frac{15625}{28} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( 247 a - 924\) , \( 9108 a - 34079\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(247a-924\right){x}+9108a-34079$
112.1-f3 112.1-f \(\Q(\sqrt{14}) \) \( 2^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.513854052$ 0.939116998 \( \frac{9938375}{21952} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( -2153 a + 8056\) , \( -182080 a + 681281\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-2153a+8056\right){x}-182080a+681281$
112.1-f4 112.1-f \(\Q(\sqrt{14}) \) \( 2^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.513854052$ 0.939116998 \( \frac{4956477625}{941192} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( 17047 a - 63784\) , \( -1874592 a + 7014081\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(17047a-63784\right){x}-1874592a+7014081$
112.1-f5 112.1-f \(\Q(\sqrt{14}) \) \( 2^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.513854052$ 0.939116998 \( \frac{128787625}{98} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( 5047 a - 18884\) , \( 391484 a - 1464799\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(5047a-18884\right){x}+391484a-1464799$
112.1-f6 112.1-f \(\Q(\sqrt{14}) \) \( 2^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.513854052$ 0.939116998 \( \frac{2251439055699625}{25088} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( 1310647 a - 4904004\) , \( -1576286340 a + 5897923441\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(1310647a-4904004\right){x}-1576286340a+5897923441$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.