Properties

Label 2.2.53.1-1764.1-j1
Base field \(\Q(\sqrt{53}) \)
Conductor norm \( 1764 \)
CM no
Base change no
Q-curve yes
Torsion order \( 10 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{53}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 13 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-13, -1, 1]))
 
gp: K = nfinit(Polrev([-13, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-13, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-7651a-24042\right){x}+591532a+1857453\)
sage: E = EllipticCurve([K([0,1]),K([1,0]),K([0,0]),K([-24042,-7651]),K([1857453,591532])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([1,0]),Polrev([0,0]),Polrev([-24042,-7651]),Polrev([1857453,591532])], K);
 
magma: E := EllipticCurve([K![0,1],K![1,0],K![0,0],K![-24042,-7651],K![1857453,591532]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((42)\) = \((2)\cdot(-a-2)\cdot(-a+3)\cdot(3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 1764 \) = \(4\cdot7\cdot7\cdot9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((20338217928)\) = \((2)^{3}\cdot(-a-2)^{10}\cdot(-a+3)^{10}\cdot(3)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 413643108486820613184 \) = \(4^{3}\cdot7^{10}\cdot7^{10}\cdot9^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{144446945077709}{20338217928} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/10\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(11 a + 32 : 73 a + 233 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1.3629212640711105999457906443940970316 \)
Tamagawa product: \( 200 \)  =  \(1\cdot( 2 \cdot 5 )\cdot( 2 \cdot 5 )\cdot2\)
Torsion order: \(10\)
Leading coefficient: \( 3.3698094021084216207793759252549832248 \)
Analytic order of Ш: \( 9 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2)\) \(4\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)
\((-a-2)\) \(7\) \(10\) \(I_{10}\) Split multiplicative \(-1\) \(1\) \(10\) \(10\)
\((-a+3)\) \(7\) \(10\) \(I_{10}\) Split multiplicative \(-1\) \(1\) \(10\) \(10\)
\((3)\) \(9\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 1764.1-j consists of curves linked by isogenies of degrees dividing 10.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.