Label |
Base field |
Conductor |
Isogeny class |
Weierstrass coefficients |
1764.1-a1 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-a |
\( \bigl[a + 1\) , \( -1\) , \( 1\) , \( 3 a + 10\) , \( 51 a + 160\bigr] \) |
1764.1-a2 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-a |
\( \bigl[a + 1\) , \( -1\) , \( 1\) , \( -87 a - 280\) , \( 679 a + 2140\bigr] \) |
1764.1-b1 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-b |
\( \bigl[a\) , \( -a\) , \( 1\) , \( -12 a - 25\) , \( 11 a + 42\bigr] \) |
1764.1-b2 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-b |
\( \bigl[a\) , \( -a\) , \( 1\) , \( -132 a - 405\) , \( 1539 a + 4834\bigr] \) |
1764.1-c1 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-c |
\( \bigl[1\) , \( 1\) , \( 1\) , \( -4\) , \( 5\bigr] \) |
1764.1-c2 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-c |
\( \bigl[1\) , \( 1\) , \( 1\) , \( 386\) , \( 1277\bigr] \) |
1764.1-c3 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-c |
\( \bigl[1\) , \( 1\) , \( 1\) , \( -104\) , \( 101\bigr] \) |
1764.1-c4 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-c |
\( \bigl[1\) , \( 1\) , \( 1\) , \( -914\) , \( -10915\bigr] \) |
1764.1-c5 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-c |
\( \bigl[1\) , \( 1\) , \( 1\) , \( -84\) , \( 261\bigr] \) |
1764.1-c6 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-c |
\( \bigl[1\) , \( 1\) , \( 1\) , \( -1344\) , \( 18405\bigr] \) |
1764.1-d1 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-d |
\( \bigl[a + 1\) , \( -a + 1\) , \( 1\) , \( 2 a - 5\) , \( -a + 3\bigr] \) |
1764.1-d2 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-d |
\( \bigl[a + 1\) , \( -a + 1\) , \( 1\) , \( 42 a - 205\) , \( -273 a + 1027\bigr] \) |
1764.1-e1 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-e |
\( \bigl[1\) , \( a + 1\) , \( 0\) , \( -7 a - 21\) , \( 151 a + 474\bigr] \) |
1764.1-e2 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-e |
\( \bigl[1\) , \( a + 1\) , \( 0\) , \( -287 a - 901\) , \( 4543 a + 14266\bigr] \) |
1764.1-f1 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-f |
\( \bigl[a\) , \( a + 1\) , \( a + 1\) , \( 7 a - 11\) , \( -5 a + 42\bigr] \) |
1764.1-f2 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-f |
\( \bigl[a\) , \( a + 1\) , \( a + 1\) , \( 7 a - 21\) , \( -a + 8\bigr] \) |
1764.1-g1 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-g |
\( \bigl[a\) , \( 0\) , \( 1\) , \( 5984 a - 25461\) , \( -486338 a + 2019807\bigr] \) |
1764.1-g2 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-g |
\( \bigl[a\) , \( 0\) , \( 1\) , \( 4694 a - 30631\) , \( -400390 a + 2097959\bigr] \) |
1764.1-h1 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-h |
\( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( -155 a - 787\) , \( -1360 a - 2199\bigr] \) |
1764.1-h2 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-h |
\( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( -1435 a - 9267\) , \( 73328 a + 358153\bigr] \) |
1764.1-i1 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-i |
\( \bigl[a\) , \( -a\) , \( 1\) , \( -4 a + 14\) , \( -51 a + 211\bigr] \) |
1764.1-i2 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-i |
\( \bigl[a\) , \( -a\) , \( 1\) , \( 86 a - 366\) , \( -679 a + 2819\bigr] \) |
1764.1-j1 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-j |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -7651 a - 24042\) , \( 591532 a + 1857453\bigr] \) |
1764.1-j2 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-j |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -76706 a - 241072\) , \( -21970160 a - 68988956\bigr] \) |
1764.1-j3 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-j |
\( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 7371 a - 30533\) , \( -644684 a + 2669041\bigr] \) |
1764.1-j4 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-j |
\( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 1223586 a - 5069138\) , \( 1408580848 a - 5831683340\bigr] \) |
1764.1-k1 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-k |
\( \bigl[a + 1\) , \( -1\) , \( 1\) , \( 11 a - 37\) , \( -11 a + 53\bigr] \) |
1764.1-k2 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-k |
\( \bigl[a + 1\) , \( -1\) , \( 1\) , \( 131 a - 537\) , \( -1539 a + 6373\bigr] \) |
1764.1-l1 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-l |
\( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( -8\) , \( -14 a - 20\bigr] \) |
1764.1-l2 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-l |
\( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 2\) , \( 0\bigr] \) |
1764.1-m1 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-m |
\( \bigl[1\) , \( -a - 1\) , \( 1\) , \( 9 a - 30\) , \( -159 a + 654\bigr] \) |
1764.1-m2 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-m |
\( \bigl[1\) , \( -a - 1\) , \( 1\) , \( 289 a - 1190\) , \( -4831 a + 19998\bigr] \) |
1764.1-n1 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-n |
\( \bigl[a\) , \( 1\) , \( 1\) , \( -3 a - 2\) , \( a + 2\bigr] \) |
1764.1-n2 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-n |
\( \bigl[a\) , \( 1\) , \( 1\) , \( -43 a - 162\) , \( 273 a + 754\bigr] \) |
1764.1-o1 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-o |
\( \bigl[a\) , \( a\) , \( a\) , \( 163 a - 957\) , \( 410 a - 539\bigr] \) |
1764.1-o2 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-o |
\( \bigl[a\) , \( a\) , \( a\) , \( 1443 a - 10717\) , \( -84038 a + 460901\bigr] \) |
1764.1-p1 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-p |
\( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -4695 a - 25937\) , \( 400390 a + 1697569\bigr] \) |
1764.1-p2 |
\(\Q(\sqrt{53}) \)
|
1764.1 |
1764.1-p |
\( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -5985 a - 19477\) , \( 486338 a + 1533469\bigr] \) |