Learn more

Refine search


Results (5 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
784.1-a1 784.1-a \(\Q(\sqrt{5}) \) \( 2^{4} \cdot 7^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $2.007136303$ 0.897618643 \( -\frac{221184}{7} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -8 \phi - 8\) , \( -16 \phi - 12\bigr] \) ${y}^2={x}^{3}+\left(-8\phi-8\right){x}-16\phi-12$
784.1-b1 784.1-b \(\Q(\sqrt{5}) \) \( 2^{4} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $6.351380586$ 1.420211874 \( -\frac{574992}{2401} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -11 \phi - 11\) , \( 72 \phi + 54\bigr] \) ${y}^2={x}^{3}+\left(-11\phi-11\right){x}+72\phi+54$
784.1-b2 784.1-b \(\Q(\sqrt{5}) \) \( 2^{4} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $12.70276117$ 1.420211874 \( -\frac{1042385925888}{7} a + \frac{1686615870096}{7} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 19 \phi - 86\) , \( -152 \phi + 278\bigr] \) ${y}^2={x}^{3}+\left(19\phi-86\right){x}-152\phi+278$
784.1-b3 784.1-b \(\Q(\sqrt{5}) \) \( 2^{4} \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $25.40552234$ 1.420211874 \( \frac{28311552}{49} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -16 \phi - 16\) , \( 44 \phi + 33\bigr] \) ${y}^2={x}^{3}+\left(-16\phi-16\right){x}+44\phi+33$
784.1-b4 784.1-b \(\Q(\sqrt{5}) \) \( 2^{4} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $12.70276117$ 1.420211874 \( \frac{1042385925888}{7} a + \frac{644229944208}{7} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -19 \phi - 67\) , \( 152 \phi + 126\bigr] \) ${y}^2={x}^{3}+\left(-19\phi-67\right){x}+152\phi+126$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.