Properties

Base field \(\Q(\sqrt{5}) \)
Label 2.2.5.1-76.2-b
Conductor 76.2
Rank \( 0 \)

Related objects

Learn more about

Base field \(\Q(\sqrt{5}) \)

Generator \(\phi\), with minimal polynomial \( x^{2} - x - 1 \); class number \(1\).

Elliptic curves in class 76.2-b over \(\Q(\sqrt{5}) \)

Isogeny class 76.2-b contains 4 curves linked by isogenies of degrees dividing 27.

Curve label Weierstrass Coefficients
76.2-b1 \( \bigl[\phi\) , \( -\phi + 1\) , \( 1\) , \( -3365 \phi - 12621\) , \( -229016 \phi - 564210\bigr] \)
76.2-b2 \( \bigl[\phi\) , \( -\phi + 1\) , \( 1\) , \( -45 \phi - 151\) , \( -264 \phi - 858\bigr] \)
76.2-b3 \( \bigl[\phi\) , \( -\phi + 1\) , \( 1\) , \( -1\) , \( 0\bigr] \)
76.2-b4 \( \bigl[\phi\) , \( -\phi + 1\) , \( 1\) , \( -5 \phi + 9\) , \( -8 \phi + 6\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrr} 1 & 3 & 27 & 9 \\ 3 & 1 & 9 & 3 \\ 27 & 9 & 1 & 3 \\ 9 & 3 & 3 & 1 \end{array}\right)\)

Isogeny graph