Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
49.1-a1 |
49.1-a |
$2$ |
$5$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
49.1 |
\( 7^{2} \) |
\( 7^{10} \) |
$0.52866$ |
$(7)$ |
$0$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$5$ |
5B.1.4[2] |
$1$ |
\( 1 \) |
$1$ |
$1.045448192$ |
0.467538645 |
\( -\frac{2887553024}{16807} \) |
\( \bigl[0\) , \( -\phi + 1\) , \( 1\) , \( -30 \phi - 29\) , \( -102 \phi - 84\bigr] \) |
${y}^2+{y}={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(-30\phi-29\right){x}-102\phi-84$ |
49.1-a2 |
49.1-a |
$2$ |
$5$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
49.1 |
\( 7^{2} \) |
\( 7^{2} \) |
$0.52866$ |
$(7)$ |
$0$ |
$\Z/5\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$5$ |
5B.1.1[2] |
$1$ |
\( 1 \) |
$1$ |
$26.13620482$ |
0.467538645 |
\( \frac{4096}{7} \) |
\( \bigl[0\) , \( \phi\) , \( 1\) , \( 1\) , \( 0\bigr] \) |
${y}^2+{y}={x}^{3}+\phi{x}^{2}+{x}$ |
Download to
Pari/GP
SageMath
Magma
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.