Learn more

Refine search


Results (1-50 of 68 matches)

Next   Download to          
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
2880.1-a1 2880.1-a \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $0.457625118$ $5.152795893$ 2.109102993 \( -\frac{15265696}{75} a + \frac{24717616}{75} \) \( \bigl[0\) , \( -\phi + 1\) , \( 0\) , \( 14 \phi - 17\) , \( 35 \phi - 45\bigr] \) ${y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(14\phi-17\right){x}+35\phi-45$
2880.1-a2 2880.1-a \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $0.457625118$ $5.152795893$ 2.109102993 \( \frac{41824}{15} a + \frac{1384816}{405} \) \( \bigl[0\) , \( -\phi + 1\) , \( 0\) , \( -11 \phi + 3\) , \( -9 \phi - 2\bigr] \) ${y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(-11\phi+3\right){x}-9\phi-2$
2880.1-a3 2880.1-a \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.228812559$ $20.61118357$ 2.109102993 \( \frac{126976}{45} a + \frac{157696}{45} \) \( \bigl[0\) , \( -\phi + 1\) , \( 0\) , \( -\phi - 2\) , \( 2 \phi\bigr] \) ${y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(-\phi-2\right){x}+2\phi$
2880.1-a4 2880.1-a \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $0.114406279$ $20.61118357$ 2.109102993 \( \frac{356106176}{15} a + \frac{222854512}{15} \) \( \bigl[0\) , \( -\phi + 1\) , \( 0\) , \( -16 \phi - 32\) , \( 68 \phi + 72\bigr] \) ${y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(-16\phi-32\right){x}+68\phi+72$
2880.1-b1 2880.1-b \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $0$ $\Z/8\Z$ $1$ $7.350139618$ 1.643541183 \( -\frac{20185376}{1875} a + \frac{32487536}{1875} \) \( \bigl[0\) , \( \phi + 1\) , \( 0\) , \( -8 \phi - 16\) , \( 116 \phi + 84\bigr] \) ${y}^2={x}^{3}+\left(\phi+1\right){x}^{2}+\left(-8\phi-16\right){x}+116\phi+84$
2880.1-b2 2880.1-b \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $0.918767452$ 1.643541183 \( -\frac{886112689030408}{45} a + \frac{1433760448791524}{45} \) \( \bigl[0\) , \( \phi + 1\) , \( 0\) , \( 337 \phi - 221\) , \( 1687 \phi - 2436\bigr] \) ${y}^2={x}^{3}+\left(\phi+1\right){x}^{2}+\left(337\phi-221\right){x}+1687\phi-2436$
2880.1-b3 2880.1-b \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $3.675069809$ 1.643541183 \( -\frac{133519232}{45} a + \frac{389009552}{81} \) \( \bigl[0\) , \( \phi + 1\) , \( 0\) , \( -23 \phi - 41\) , \( -5 \phi - 60\bigr] \) ${y}^2={x}^{3}+\left(\phi+1\right){x}^{2}+\left(-23\phi-41\right){x}-5\phi-60$
2880.1-b4 2880.1-b \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $0.918767452$ 1.643541183 \( \frac{463495048}{3645} a + \frac{2515600844}{32805} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 17 \phi - 156\) , \( 267 \phi - 1036\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(17\phi-156\right){x}+267\phi-1036$
2880.1-b5 2880.1-b \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $14.70027923$ 1.643541183 \( \frac{29106176}{225} a + \frac{18753536}{225} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 2 \phi - 11\) , \( 10 \phi - 10\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(2\phi-11\right){x}+10\phi-10$
2880.1-b6 2880.1-b \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $0$ $\Z/4\Z$ $1$ $7.350139618$ 1.643541183 \( \frac{571633459744}{15} a + \frac{70657783888}{3} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -73 \phi - 11\) , \( 265 \phi + 95\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-73\phi-11\right){x}+265\phi+95$
2880.1-c1 2880.1-c \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $0.031160218$ $6.781207515$ 2.267951512 \( \frac{151216}{1125} a - \frac{249104}{1125} \) \( \bigl[0\) , \( \phi - 1\) , \( 0\) , \( -4\) , \( 24 \phi + 28\bigr] \) ${y}^2={x}^{3}+\left(\phi-1\right){x}^{2}-4{x}+24\phi+28$
2880.1-c2 2880.1-c \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $0.062320436$ $27.12483006$ 2.267951512 \( -\frac{20736256}{75} a + \frac{40665088}{75} \) \( \bigl[0\) , \( \phi - 1\) , \( 0\) , \( -5 \phi - 9\) , \( 6 \phi + 14\bigr] \) ${y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(-5\phi-9\right){x}+6\phi+14$
2880.1-d1 2880.1-d \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/4\Z$ $1.601298680$ $12.89292577$ 2.308228689 \( -\frac{2051350000672}{15} a + \frac{3319154020496}{15} \) \( \bigl[0\) , \( \phi + 1\) , \( 0\) , \( -15 \phi - 45\) , \( 243 \phi + 228\bigr] \) ${y}^2={x}^{3}+\left(\phi+1\right){x}^{2}+\left(-15\phi-45\right){x}+243\phi+228$
2880.1-d2 2880.1-d \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $1.601298680$ $0.402903930$ 2.308228689 \( -\frac{27995042}{1171875} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -80\) , \( -2400\bigr] \) ${y}^2={x}^{3}+{x}^{2}-80{x}-2400$
2880.1-d3 2880.1-d \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/4\Z$ $0.800649340$ $1.611615721$ 2.308228689 \( \frac{54607676}{32805} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 80\) , \( 80\bigr] \) ${y}^2={x}^{3}+{x}^{2}+80{x}+80$
2880.1-d4 2880.1-d \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $0.400324670$ $6.446462887$ 2.308228689 \( \frac{3631696}{2025} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -20\) , \( 0\bigr] \) ${y}^2={x}^{3}+{x}^{2}-20{x}$
2880.1-d5 2880.1-d \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.800649340$ $1.611615721$ 2.308228689 \( \frac{868327204}{5625} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -200\) , \( -1152\bigr] \) ${y}^2={x}^{3}+{x}^{2}-200{x}-1152$
2880.1-d6 2880.1-d \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $0.800649340$ $25.78585154$ 2.308228689 \( \frac{24918016}{45} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -15\) , \( 18\bigr] \) ${y}^2={x}^{3}+{x}^{2}-15{x}+18$
2880.1-d7 2880.1-d \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $1.601298680$ $0.402903930$ 2.308228689 \( \frac{1770025017602}{75} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -3200\) , \( -70752\bigr] \) ${y}^2={x}^{3}+{x}^{2}-3200{x}-70752$
2880.1-d8 2880.1-d \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/4\Z$ $1.601298680$ $12.89292577$ 2.308228689 \( \frac{2051350000672}{15} a + \frac{1267804019824}{15} \) \( \bigl[0\) , \( -\phi - 1\) , \( 0\) , \( 17 \phi - 61\) , \( -259 \phi + 532\bigr] \) ${y}^2={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(17\phi-61\right){x}-259\phi+532$
2880.1-e1 2880.1-e \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $0.077981128$ $7.698671196$ 2.147881279 \( \frac{30832}{45} a + \frac{19888}{45} \) \( \bigl[0\) , \( -\phi - 1\) , \( 0\) , \( 2 \phi + 3\) , \( -5 \phi + 5\bigr] \) ${y}^2={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(2\phi+3\right){x}-5\phi+5$
2880.1-e2 2880.1-e \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $0.155962257$ $30.79468478$ 2.147881279 \( -\frac{138496}{15} a + \frac{252928}{15} \) \( \bigl[0\) , \( -\phi - 1\) , \( 0\) , \( 2 \phi - 2\) , \( -\phi + 2\bigr] \) ${y}^2={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(2\phi-2\right){x}-\phi+2$
2880.1-f1 2880.1-f \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $0.332493007$ $7.129054045$ 2.120114989 \( -\frac{313639412}{15} a + \frac{845826316}{25} \) \( \bigl[0\) , \( \phi\) , \( 0\) , \( 51 \phi - 8\) , \( 53 \phi + 137\bigr] \) ${y}^2={x}^{3}+\phi{x}^{2}+\left(51\phi-8\right){x}+53\phi+137$
2880.1-f2 2880.1-f \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.166246503$ $14.25810809$ 2.120114989 \( -\frac{20048}{9} a + \frac{280544}{45} \) \( \bigl[0\) , \( \phi - 1\) , \( 0\) , \( 6 \phi - 13\) , \( -15 \phi + 25\bigr] \) ${y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(6\phi-13\right){x}-15\phi+25$
2880.1-f3 2880.1-f \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $0.332493007$ $14.25810809$ 2.120114989 \( \frac{207104}{15} a + \frac{84736}{5} \) \( \bigl[0\) , \( \phi - 1\) , \( 0\) , \( \phi - 3\) , \( -1\bigr] \) ${y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(\phi-3\right){x}-1$
2880.1-f4 2880.1-f \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $0.332493007$ $7.129054045$ 2.120114989 \( \frac{188668564}{135} a + \frac{349913524}{405} \) \( \bigl[0\) , \( \phi - 1\) , \( 0\) , \( -34 \phi + 7\) , \( \phi + 117\bigr] \) ${y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(-34\phi+7\right){x}+\phi+117$
2880.1-g1 2880.1-g \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $3.041484370$ 1.360193161 \( -\frac{1078933549684}{675} a + \frac{5237253566636}{2025} \) \( \bigl[0\) , \( -\phi + 1\) , \( 0\) , \( 150 \phi - 145\) , \( -1545 \phi + 335\bigr] \) ${y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(150\phi-145\right){x}-1545\phi+335$
2880.1-g2 2880.1-g \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $3.041484370$ 1.360193161 \( \frac{91420052}{46875} a + \frac{56499052}{46875} \) \( \bigl[0\) , \( \phi\) , \( 0\) , \( -22 \phi - 19\) , \( -455 \phi + 830\bigr] \) ${y}^2={x}^{3}+\phi{x}^{2}+\left(-22\phi-19\right){x}-455\phi+830$
2880.1-g3 2880.1-g \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $6.082968741$ 1.360193161 \( -\frac{22222352}{1125} a + \frac{434912}{9} \) \( \bigl[0\) , \( \phi\) , \( 0\) , \( 38 \phi - 79\) , \( -203 \phi + 290\bigr] \) ${y}^2={x}^{3}+\phi{x}^{2}+\left(38\phi-79\right){x}-203\phi+290$
2880.1-g4 2880.1-g \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $6.082968741$ 1.360193161 \( \frac{8168248576}{75} a + \frac{5048421632}{75} \) \( \bigl[0\) , \( \phi\) , \( 0\) , \( -2 \phi - 14\) , \( -15 \phi - 15\bigr] \) ${y}^2={x}^{3}+\phi{x}^{2}+\left(-2\phi-14\right){x}-15\phi-15$
2880.1-h1 2880.1-h \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $0.077981128$ $7.698671196$ 2.147881279 \( -\frac{30832}{45} a + \frac{10144}{9} \) \( \bigl[0\) , \( \phi + 1\) , \( 0\) , \( 4\) , \( 4 \phi + 4\bigr] \) ${y}^2={x}^{3}+\left(\phi+1\right){x}^{2}+4{x}+4\phi+4$
2880.1-h2 2880.1-h \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $0.155962257$ $30.79468478$ 2.147881279 \( \frac{138496}{15} a + \frac{38144}{5} \) \( \bigl[0\) , \( \phi + 1\) , \( 0\) , \( -1\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(\phi+1\right){x}^{2}-{x}$
2880.1-i1 2880.1-i \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $0$ $\Z/4\Z$ $1$ $1.876026934$ 1.677969501 \( -\frac{432796}{675} a + \frac{80396}{81} \) \( \bigl[0\) , \( \phi + 1\) , \( 0\) , \( -14 \phi + 7\) , \( -95 \phi - 45\bigr] \) ${y}^2={x}^{3}+\left(\phi+1\right){x}^{2}+\left(-14\phi+7\right){x}-95\phi-45$
2880.1-i2 2880.1-i \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $0$ $\Z/4\Z$ $1$ $30.01643095$ 1.677969501 \( -\frac{9881344}{15} a + \frac{16014592}{15} \) \( \bigl[0\) , \( \phi + 1\) , \( 0\) , \( \phi - 3\) , \( -2 \phi + 1\bigr] \) ${y}^2={x}^{3}+\left(\phi+1\right){x}^{2}+\left(\phi-3\right){x}-2\phi+1$
2880.1-i3 2880.1-i \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $7.504107738$ 1.677969501 \( \frac{3986224}{45} a + \frac{2559712}{45} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 11 \phi - 23\) , \( -11 \phi + 11\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(11\phi-23\right){x}-11\phi+11$
2880.1-i4 2880.1-i \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $1.876026934$ 1.677969501 \( \frac{266900520844}{15} a + \frac{164954615228}{15} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 71 \phi - 203\) , \( 541 \phi - 1225\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(71\phi-203\right){x}+541\phi-1225$
2880.1-j1 2880.1-j \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $0.031160218$ $6.781207515$ 2.267951512 \( -\frac{151216}{1125} a - \frac{97888}{1125} \) \( \bigl[0\) , \( -\phi\) , \( 0\) , \( -4\) , \( -24 \phi + 52\bigr] \) ${y}^2={x}^{3}-\phi{x}^{2}-4{x}-24\phi+52$
2880.1-j2 2880.1-j \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $0.062320436$ $27.12483006$ 2.267951512 \( \frac{20736256}{75} a + \frac{6642944}{25} \) \( \bigl[0\) , \( -\phi\) , \( 0\) , \( 5 \phi - 14\) , \( -6 \phi + 20\bigr] \) ${y}^2={x}^{3}-\phi{x}^{2}+\left(5\phi-14\right){x}-6\phi+20$
2880.1-k1 2880.1-k \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $1.755553375$ 1.570214674 \( -\frac{17275984}{3645} a - \frac{8362384}{3645} \) \( \bigl[0\) , \( \phi - 1\) , \( 0\) , \( -34 \phi + 43\) , \( -107 \phi + 153\bigr] \) ${y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(-34\phi+43\right){x}-107\phi+153$
2880.1-k2 2880.1-k \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $7.022213503$ 1.570214674 \( \frac{6897625856}{135} a + \frac{473724928}{15} \) \( \bigl[0\) , \( \phi - 1\) , \( 0\) , \( 6 \phi - 22\) , \( -33 \phi + 34\bigr] \) ${y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(6\phi-22\right){x}-33\phi+34$
2880.1-l1 2880.1-l \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $0$ $\Z/4\Z$ $1$ $6.199205081$ 1.386184396 \( \frac{21296}{15} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 4\) , \( 0\bigr] \) ${y}^2={x}^{3}+{x}^{2}+4{x}$
2880.1-l2 2880.1-l \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $6.199205081$ 1.386184396 \( \frac{470596}{225} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -16\) , \( -16\bigr] \) ${y}^2={x}^{3}+{x}^{2}-16{x}-16$
2880.1-l3 2880.1-l \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $6.199205081$ 1.386184396 \( \frac{136835858}{1875} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -136\) , \( 560\bigr] \) ${y}^2={x}^{3}+{x}^{2}-136{x}+560$
2880.1-l4 2880.1-l \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $1.549801270$ 1.386184396 \( \frac{546718898}{405} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -216\) , \( -1296\bigr] \) ${y}^2={x}^{3}+{x}^{2}-216{x}-1296$
2880.1-m1 2880.1-m \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $1.755553375$ 1.570214674 \( \frac{17275984}{3645} a - \frac{25638368}{3645} \) \( \bigl[0\) , \( -\phi\) , \( 0\) , \( 34 \phi + 9\) , \( 107 \phi + 46\bigr] \) ${y}^2={x}^{3}-\phi{x}^{2}+\left(34\phi+9\right){x}+107\phi+46$
2880.1-m2 2880.1-m \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $7.022213503$ 1.570214674 \( -\frac{6897625856}{135} a + \frac{11161150208}{135} \) \( \bigl[0\) , \( -\phi\) , \( 0\) , \( -6 \phi - 16\) , \( 33 \phi + 1\bigr] \) ${y}^2={x}^{3}-\phi{x}^{2}+\left(-6\phi-16\right){x}+33\phi+1$
2880.1-n1 2880.1-n \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $0.332493007$ $7.129054045$ 2.120114989 \( -\frac{188668564}{135} a + \frac{915919216}{405} \) \( \bigl[0\) , \( -\phi\) , \( 0\) , \( 34 \phi - 27\) , \( -\phi + 118\bigr] \) ${y}^2={x}^{3}-\phi{x}^{2}+\left(34\phi-27\right){x}-\phi+118$
2880.1-n2 2880.1-n \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.166246503$ $14.25810809$ 2.120114989 \( \frac{20048}{9} a + \frac{180304}{45} \) \( \bigl[0\) , \( -\phi\) , \( 0\) , \( -6 \phi - 7\) , \( 15 \phi + 10\bigr] \) ${y}^2={x}^{3}-\phi{x}^{2}+\left(-6\phi-7\right){x}+15\phi+10$
2880.1-n3 2880.1-n \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $0.332493007$ $14.25810809$ 2.120114989 \( -\frac{207104}{15} a + \frac{461312}{15} \) \( \bigl[0\) , \( -\phi\) , \( 0\) , \( -\phi - 2\) , \( -1\bigr] \) ${y}^2={x}^{3}-\phi{x}^{2}+\left(-\phi-2\right){x}-1$
2880.1-n4 2880.1-n \(\Q(\sqrt{5}) \) \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $0.332493007$ $7.129054045$ 2.120114989 \( \frac{313639412}{15} a + \frac{969281888}{75} \) \( \bigl[0\) , \( -\phi + 1\) , \( 0\) , \( -51 \phi + 43\) , \( -53 \phi + 190\bigr] \) ${y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(-51\phi+43\right){x}-53\phi+190$
Next   Download to          

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.