Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
2880.1-a1 |
2880.1-a |
$4$ |
$4$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( - 2^{16} \cdot 3^{2} \cdot 5^{4} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.457625118$ |
$5.152795893$ |
2.109102993 |
\( -\frac{15265696}{75} a + \frac{24717616}{75} \) |
\( \bigl[0\) , \( -\phi + 1\) , \( 0\) , \( 14 \phi - 17\) , \( 35 \phi - 45\bigr] \) |
${y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(14\phi-17\right){x}+35\phi-45$ |
2880.1-a2 |
2880.1-a |
$4$ |
$4$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( - 2^{16} \cdot 3^{8} \cdot 5 \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.457625118$ |
$5.152795893$ |
2.109102993 |
\( \frac{41824}{15} a + \frac{1384816}{405} \) |
\( \bigl[0\) , \( -\phi + 1\) , \( 0\) , \( -11 \phi + 3\) , \( -9 \phi - 2\bigr] \) |
${y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(-11\phi+3\right){x}-9\phi-2$ |
2880.1-a3 |
2880.1-a |
$4$ |
$4$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$0.228812559$ |
$20.61118357$ |
2.109102993 |
\( \frac{126976}{45} a + \frac{157696}{45} \) |
\( \bigl[0\) , \( -\phi + 1\) , \( 0\) , \( -\phi - 2\) , \( 2 \phi\bigr] \) |
${y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(-\phi-2\right){x}+2\phi$ |
2880.1-a4 |
2880.1-a |
$4$ |
$4$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{16} \cdot 3^{2} \cdot 5 \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.114406279$ |
$20.61118357$ |
2.109102993 |
\( \frac{356106176}{15} a + \frac{222854512}{15} \) |
\( \bigl[0\) , \( -\phi + 1\) , \( 0\) , \( -16 \phi - 32\) , \( 68 \phi + 72\bigr] \) |
${y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(-16\phi-32\right){x}+68\phi+72$ |
2880.1-b1 |
2880.1-b |
$6$ |
$8$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( - 2^{16} \cdot 3^{2} \cdot 5^{8} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$0$ |
$\Z/8\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1$ |
$7.350139618$ |
1.643541183 |
\( -\frac{20185376}{1875} a + \frac{32487536}{1875} \) |
\( \bigl[0\) , \( \phi + 1\) , \( 0\) , \( -8 \phi - 16\) , \( 116 \phi + 84\bigr] \) |
${y}^2={x}^{3}+\left(\phi+1\right){x}^{2}+\left(-8\phi-16\right){x}+116\phi+84$ |
2880.1-b2 |
2880.1-b |
$6$ |
$8$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( - 2^{20} \cdot 3^{4} \cdot 5 \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$4$ |
\( 2^{2} \) |
$1$ |
$0.918767452$ |
1.643541183 |
\( -\frac{886112689030408}{45} a + \frac{1433760448791524}{45} \) |
\( \bigl[0\) , \( \phi + 1\) , \( 0\) , \( 337 \phi - 221\) , \( 1687 \phi - 2436\bigr] \) |
${y}^2={x}^{3}+\left(\phi+1\right){x}^{2}+\left(337\phi-221\right){x}+1687\phi-2436$ |
2880.1-b3 |
2880.1-b |
$6$ |
$8$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{16} \cdot 3^{8} \cdot 5^{2} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$1$ |
$3.675069809$ |
1.643541183 |
\( -\frac{133519232}{45} a + \frac{389009552}{81} \) |
\( \bigl[0\) , \( \phi + 1\) , \( 0\) , \( -23 \phi - 41\) , \( -5 \phi - 60\bigr] \) |
${y}^2={x}^{3}+\left(\phi+1\right){x}^{2}+\left(-23\phi-41\right){x}-5\phi-60$ |
2880.1-b4 |
2880.1-b |
$6$ |
$8$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( - 2^{20} \cdot 3^{16} \cdot 5 \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.918767452$ |
1.643541183 |
\( \frac{463495048}{3645} a + \frac{2515600844}{32805} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( 17 \phi - 156\) , \( 267 \phi - 1036\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(17\phi-156\right){x}+267\phi-1036$ |
2880.1-b5 |
2880.1-b |
$6$ |
$8$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{4} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$1$ |
$14.70027923$ |
1.643541183 |
\( \frac{29106176}{225} a + \frac{18753536}{225} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( 2 \phi - 11\) , \( 10 \phi - 10\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(2\phi-11\right){x}+10\phi-10$ |
2880.1-b6 |
2880.1-b |
$6$ |
$8$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( - 2^{16} \cdot 3^{2} \cdot 5^{2} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$7.350139618$ |
1.643541183 |
\( \frac{571633459744}{15} a + \frac{70657783888}{3} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -73 \phi - 11\) , \( 265 \phi + 95\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(-73\phi-11\right){x}+265\phi+95$ |
2880.1-c1 |
2880.1-c |
$2$ |
$2$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{16} \cdot 3^{4} \cdot 5^{6} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \cdot 3 \) |
$0.031160218$ |
$6.781207515$ |
2.267951512 |
\( \frac{151216}{1125} a - \frac{249104}{1125} \) |
\( \bigl[0\) , \( \phi - 1\) , \( 0\) , \( -4\) , \( 24 \phi + 28\bigr] \) |
${y}^2={x}^{3}+\left(\phi-1\right){x}^{2}-4{x}+24\phi+28$ |
2880.1-c2 |
2880.1-c |
$2$ |
$2$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{8} \cdot 3^{2} \cdot 5^{3} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \cdot 3 \) |
$0.062320436$ |
$27.12483006$ |
2.267951512 |
\( -\frac{20736256}{75} a + \frac{40665088}{75} \) |
\( \bigl[0\) , \( \phi - 1\) , \( 0\) , \( -5 \phi - 9\) , \( 6 \phi + 14\bigr] \) |
${y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(-5\phi-9\right){x}+6\phi+14$ |
2880.1-d1 |
2880.1-d |
$8$ |
$16$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( - 2^{16} \cdot 3^{2} \cdot 5 \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1.601298680$ |
$12.89292577$ |
2.308228689 |
\( -\frac{2051350000672}{15} a + \frac{3319154020496}{15} \) |
\( \bigl[0\) , \( \phi + 1\) , \( 0\) , \( -15 \phi - 45\) , \( 243 \phi + 228\bigr] \) |
${y}^2={x}^{3}+\left(\phi+1\right){x}^{2}+\left(-15\phi-45\right){x}+243\phi+228$ |
2880.1-d2 |
2880.1-d |
$8$ |
$16$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{22} \cdot 3^{2} \cdot 5^{16} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1.601298680$ |
$0.402903930$ |
2.308228689 |
\( -\frac{27995042}{1171875} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -80\) , \( -2400\bigr] \) |
${y}^2={x}^{3}+{x}^{2}-80{x}-2400$ |
2880.1-d3 |
2880.1-d |
$8$ |
$16$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{20} \cdot 3^{16} \cdot 5^{2} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$0.800649340$ |
$1.611615721$ |
2.308228689 |
\( \frac{54607676}{32805} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( 80\) , \( 80\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+80{x}+80$ |
2880.1-d4 |
2880.1-d |
$8$ |
$16$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{16} \cdot 3^{8} \cdot 5^{4} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$0.400324670$ |
$6.446462887$ |
2.308228689 |
\( \frac{3631696}{2025} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -20\) , \( 0\bigr] \) |
${y}^2={x}^{3}+{x}^{2}-20{x}$ |
2880.1-d5 |
2880.1-d |
$8$ |
$16$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{20} \cdot 3^{4} \cdot 5^{8} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$0.800649340$ |
$1.611615721$ |
2.308228689 |
\( \frac{868327204}{5625} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -200\) , \( -1152\bigr] \) |
${y}^2={x}^{3}+{x}^{2}-200{x}-1152$ |
2880.1-d6 |
2880.1-d |
$8$ |
$16$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$0.800649340$ |
$25.78585154$ |
2.308228689 |
\( \frac{24918016}{45} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -15\) , \( 18\bigr] \) |
${y}^2={x}^{3}+{x}^{2}-15{x}+18$ |
2880.1-d7 |
2880.1-d |
$8$ |
$16$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{22} \cdot 3^{2} \cdot 5^{4} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$4$ |
\( 2^{2} \) |
$1.601298680$ |
$0.402903930$ |
2.308228689 |
\( \frac{1770025017602}{75} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -3200\) , \( -70752\bigr] \) |
${y}^2={x}^{3}+{x}^{2}-3200{x}-70752$ |
2880.1-d8 |
2880.1-d |
$8$ |
$16$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( - 2^{16} \cdot 3^{2} \cdot 5 \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1.601298680$ |
$12.89292577$ |
2.308228689 |
\( \frac{2051350000672}{15} a + \frac{1267804019824}{15} \) |
\( \bigl[0\) , \( -\phi - 1\) , \( 0\) , \( 17 \phi - 61\) , \( -259 \phi + 532\bigr] \) |
${y}^2={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(17\phi-61\right){x}-259\phi+532$ |
2880.1-e1 |
2880.1-e |
$2$ |
$2$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{16} \cdot 3^{4} \cdot 5^{2} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.077981128$ |
$7.698671196$ |
2.147881279 |
\( \frac{30832}{45} a + \frac{19888}{45} \) |
\( \bigl[0\) , \( -\phi - 1\) , \( 0\) , \( 2 \phi + 3\) , \( -5 \phi + 5\bigr] \) |
${y}^2={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(2\phi+3\right){x}-5\phi+5$ |
2880.1-e2 |
2880.1-e |
$2$ |
$2$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{8} \cdot 3^{2} \cdot 5 \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$0.155962257$ |
$30.79468478$ |
2.147881279 |
\( -\frac{138496}{15} a + \frac{252928}{15} \) |
\( \bigl[0\) , \( -\phi - 1\) , \( 0\) , \( 2 \phi - 2\) , \( -\phi + 2\bigr] \) |
${y}^2={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(2\phi-2\right){x}-\phi+2$ |
2880.1-f1 |
2880.1-f |
$4$ |
$4$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( - 2^{20} \cdot 3^{2} \cdot 5^{4} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.332493007$ |
$7.129054045$ |
2.120114989 |
\( -\frac{313639412}{15} a + \frac{845826316}{25} \) |
\( \bigl[0\) , \( \phi\) , \( 0\) , \( 51 \phi - 8\) , \( 53 \phi + 137\bigr] \) |
${y}^2={x}^{3}+\phi{x}^{2}+\left(51\phi-8\right){x}+53\phi+137$ |
2880.1-f2 |
2880.1-f |
$4$ |
$4$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{16} \cdot 3^{4} \cdot 5^{2} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$0.166246503$ |
$14.25810809$ |
2.120114989 |
\( -\frac{20048}{9} a + \frac{280544}{45} \) |
\( \bigl[0\) , \( \phi - 1\) , \( 0\) , \( 6 \phi - 13\) , \( -15 \phi + 25\bigr] \) |
${y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(6\phi-13\right){x}-15\phi+25$ |
2880.1-f3 |
2880.1-f |
$4$ |
$4$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{8} \cdot 3^{2} \cdot 5 \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$0.332493007$ |
$14.25810809$ |
2.120114989 |
\( \frac{207104}{15} a + \frac{84736}{5} \) |
\( \bigl[0\) , \( \phi - 1\) , \( 0\) , \( \phi - 3\) , \( -1\bigr] \) |
${y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(\phi-3\right){x}-1$ |
2880.1-f4 |
2880.1-f |
$4$ |
$4$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( - 2^{20} \cdot 3^{8} \cdot 5 \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.332493007$ |
$7.129054045$ |
2.120114989 |
\( \frac{188668564}{135} a + \frac{349913524}{405} \) |
\( \bigl[0\) , \( \phi - 1\) , \( 0\) , \( -34 \phi + 7\) , \( \phi + 117\bigr] \) |
${y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(-34\phi+7\right){x}+\phi+117$ |
2880.1-g1 |
2880.1-g |
$4$ |
$4$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( - 2^{20} \cdot 3^{8} \cdot 5^{3} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$3.041484370$ |
1.360193161 |
\( -\frac{1078933549684}{675} a + \frac{5237253566636}{2025} \) |
\( \bigl[0\) , \( -\phi + 1\) , \( 0\) , \( 150 \phi - 145\) , \( -1545 \phi + 335\bigr] \) |
${y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(150\phi-145\right){x}-1545\phi+335$ |
2880.1-g2 |
2880.1-g |
$4$ |
$4$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( - 2^{20} \cdot 3^{2} \cdot 5^{12} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$3.041484370$ |
1.360193161 |
\( \frac{91420052}{46875} a + \frac{56499052}{46875} \) |
\( \bigl[0\) , \( \phi\) , \( 0\) , \( -22 \phi - 19\) , \( -455 \phi + 830\bigr] \) |
${y}^2={x}^{3}+\phi{x}^{2}+\left(-22\phi-19\right){x}-455\phi+830$ |
2880.1-g3 |
2880.1-g |
$4$ |
$4$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{16} \cdot 3^{4} \cdot 5^{6} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$1$ |
$6.082968741$ |
1.360193161 |
\( -\frac{22222352}{1125} a + \frac{434912}{9} \) |
\( \bigl[0\) , \( \phi\) , \( 0\) , \( 38 \phi - 79\) , \( -203 \phi + 290\bigr] \) |
${y}^2={x}^{3}+\phi{x}^{2}+\left(38\phi-79\right){x}-203\phi+290$ |
2880.1-g4 |
2880.1-g |
$4$ |
$4$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{8} \cdot 3^{2} \cdot 5^{3} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$6.082968741$ |
1.360193161 |
\( \frac{8168248576}{75} a + \frac{5048421632}{75} \) |
\( \bigl[0\) , \( \phi\) , \( 0\) , \( -2 \phi - 14\) , \( -15 \phi - 15\bigr] \) |
${y}^2={x}^{3}+\phi{x}^{2}+\left(-2\phi-14\right){x}-15\phi-15$ |
2880.1-h1 |
2880.1-h |
$2$ |
$2$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{16} \cdot 3^{4} \cdot 5^{2} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.077981128$ |
$7.698671196$ |
2.147881279 |
\( -\frac{30832}{45} a + \frac{10144}{9} \) |
\( \bigl[0\) , \( \phi + 1\) , \( 0\) , \( 4\) , \( 4 \phi + 4\bigr] \) |
${y}^2={x}^{3}+\left(\phi+1\right){x}^{2}+4{x}+4\phi+4$ |
2880.1-h2 |
2880.1-h |
$2$ |
$2$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{8} \cdot 3^{2} \cdot 5 \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$0.155962257$ |
$30.79468478$ |
2.147881279 |
\( \frac{138496}{15} a + \frac{38144}{5} \) |
\( \bigl[0\) , \( \phi + 1\) , \( 0\) , \( -1\) , \( 0\bigr] \) |
${y}^2={x}^{3}+\left(\phi+1\right){x}^{2}-{x}$ |
2880.1-i1 |
2880.1-i |
$4$ |
$4$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{20} \cdot 3^{8} \cdot 5^{4} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1$ |
$1.876026934$ |
1.677969501 |
\( -\frac{432796}{675} a + \frac{80396}{81} \) |
\( \bigl[0\) , \( \phi + 1\) , \( 0\) , \( -14 \phi + 7\) , \( -95 \phi - 45\bigr] \) |
${y}^2={x}^{3}+\left(\phi+1\right){x}^{2}+\left(-14\phi+7\right){x}-95\phi-45$ |
2880.1-i2 |
2880.1-i |
$4$ |
$4$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{8} \cdot 3^{2} \cdot 5 \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$30.01643095$ |
1.677969501 |
\( -\frac{9881344}{15} a + \frac{16014592}{15} \) |
\( \bigl[0\) , \( \phi + 1\) , \( 0\) , \( \phi - 3\) , \( -2 \phi + 1\bigr] \) |
${y}^2={x}^{3}+\left(\phi+1\right){x}^{2}+\left(\phi-3\right){x}-2\phi+1$ |
2880.1-i3 |
2880.1-i |
$4$ |
$4$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{16} \cdot 3^{4} \cdot 5^{2} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$1$ |
$7.504107738$ |
1.677969501 |
\( \frac{3986224}{45} a + \frac{2559712}{45} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( 11 \phi - 23\) , \( -11 \phi + 11\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(11\phi-23\right){x}-11\phi+11$ |
2880.1-i4 |
2880.1-i |
$4$ |
$4$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{20} \cdot 3^{2} \cdot 5 \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$4$ |
\( 2 \) |
$1$ |
$1.876026934$ |
1.677969501 |
\( \frac{266900520844}{15} a + \frac{164954615228}{15} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( 71 \phi - 203\) , \( 541 \phi - 1225\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+\left(71\phi-203\right){x}+541\phi-1225$ |
2880.1-j1 |
2880.1-j |
$2$ |
$2$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{16} \cdot 3^{4} \cdot 5^{6} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \cdot 3 \) |
$0.031160218$ |
$6.781207515$ |
2.267951512 |
\( -\frac{151216}{1125} a - \frac{97888}{1125} \) |
\( \bigl[0\) , \( -\phi\) , \( 0\) , \( -4\) , \( -24 \phi + 52\bigr] \) |
${y}^2={x}^{3}-\phi{x}^{2}-4{x}-24\phi+52$ |
2880.1-j2 |
2880.1-j |
$2$ |
$2$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{8} \cdot 3^{2} \cdot 5^{3} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \cdot 3 \) |
$0.062320436$ |
$27.12483006$ |
2.267951512 |
\( \frac{20736256}{75} a + \frac{6642944}{25} \) |
\( \bigl[0\) , \( -\phi\) , \( 0\) , \( 5 \phi - 14\) , \( -6 \phi + 20\bigr] \) |
${y}^2={x}^{3}-\phi{x}^{2}+\left(5\phi-14\right){x}-6\phi+20$ |
2880.1-k1 |
2880.1-k |
$2$ |
$2$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{16} \cdot 3^{12} \cdot 5^{2} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$1.755553375$ |
1.570214674 |
\( -\frac{17275984}{3645} a - \frac{8362384}{3645} \) |
\( \bigl[0\) , \( \phi - 1\) , \( 0\) , \( -34 \phi + 43\) , \( -107 \phi + 153\bigr] \) |
${y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(-34\phi+43\right){x}-107\phi+153$ |
2880.1-k2 |
2880.1-k |
$2$ |
$2$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{8} \cdot 3^{6} \cdot 5 \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$7.022213503$ |
1.570214674 |
\( \frac{6897625856}{135} a + \frac{473724928}{15} \) |
\( \bigl[0\) , \( \phi - 1\) , \( 0\) , \( 6 \phi - 22\) , \( -33 \phi + 34\bigr] \) |
${y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(6\phi-22\right){x}-33\phi+34$ |
2880.1-l1 |
2880.1-l |
$4$ |
$4$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{16} \cdot 3^{2} \cdot 5^{2} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$6.199205081$ |
1.386184396 |
\( \frac{21296}{15} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( 4\) , \( 0\bigr] \) |
${y}^2={x}^{3}+{x}^{2}+4{x}$ |
2880.1-l2 |
2880.1-l |
$4$ |
$4$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{20} \cdot 3^{4} \cdot 5^{4} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$1$ |
$6.199205081$ |
1.386184396 |
\( \frac{470596}{225} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -16\) , \( -16\bigr] \) |
${y}^2={x}^{3}+{x}^{2}-16{x}-16$ |
2880.1-l3 |
2880.1-l |
$4$ |
$4$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{22} \cdot 3^{2} \cdot 5^{8} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$6.199205081$ |
1.386184396 |
\( \frac{136835858}{1875} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -136\) , \( 560\bigr] \) |
${y}^2={x}^{3}+{x}^{2}-136{x}+560$ |
2880.1-l4 |
2880.1-l |
$4$ |
$4$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{22} \cdot 3^{8} \cdot 5^{2} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$1.549801270$ |
1.386184396 |
\( \frac{546718898}{405} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -216\) , \( -1296\bigr] \) |
${y}^2={x}^{3}+{x}^{2}-216{x}-1296$ |
2880.1-m1 |
2880.1-m |
$2$ |
$2$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{16} \cdot 3^{12} \cdot 5^{2} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$1.755553375$ |
1.570214674 |
\( \frac{17275984}{3645} a - \frac{25638368}{3645} \) |
\( \bigl[0\) , \( -\phi\) , \( 0\) , \( 34 \phi + 9\) , \( 107 \phi + 46\bigr] \) |
${y}^2={x}^{3}-\phi{x}^{2}+\left(34\phi+9\right){x}+107\phi+46$ |
2880.1-m2 |
2880.1-m |
$2$ |
$2$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{8} \cdot 3^{6} \cdot 5 \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$7.022213503$ |
1.570214674 |
\( -\frac{6897625856}{135} a + \frac{11161150208}{135} \) |
\( \bigl[0\) , \( -\phi\) , \( 0\) , \( -6 \phi - 16\) , \( 33 \phi + 1\bigr] \) |
${y}^2={x}^{3}-\phi{x}^{2}+\left(-6\phi-16\right){x}+33\phi+1$ |
2880.1-n1 |
2880.1-n |
$4$ |
$4$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( - 2^{20} \cdot 3^{8} \cdot 5 \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.332493007$ |
$7.129054045$ |
2.120114989 |
\( -\frac{188668564}{135} a + \frac{915919216}{405} \) |
\( \bigl[0\) , \( -\phi\) , \( 0\) , \( 34 \phi - 27\) , \( -\phi + 118\bigr] \) |
${y}^2={x}^{3}-\phi{x}^{2}+\left(34\phi-27\right){x}-\phi+118$ |
2880.1-n2 |
2880.1-n |
$4$ |
$4$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{16} \cdot 3^{4} \cdot 5^{2} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$0.166246503$ |
$14.25810809$ |
2.120114989 |
\( \frac{20048}{9} a + \frac{180304}{45} \) |
\( \bigl[0\) , \( -\phi\) , \( 0\) , \( -6 \phi - 7\) , \( 15 \phi + 10\bigr] \) |
${y}^2={x}^{3}-\phi{x}^{2}+\left(-6\phi-7\right){x}+15\phi+10$ |
2880.1-n3 |
2880.1-n |
$4$ |
$4$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( 2^{8} \cdot 3^{2} \cdot 5 \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$0.332493007$ |
$14.25810809$ |
2.120114989 |
\( -\frac{207104}{15} a + \frac{461312}{15} \) |
\( \bigl[0\) , \( -\phi\) , \( 0\) , \( -\phi - 2\) , \( -1\bigr] \) |
${y}^2={x}^{3}-\phi{x}^{2}+\left(-\phi-2\right){x}-1$ |
2880.1-n4 |
2880.1-n |
$4$ |
$4$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2880.1 |
\( 2^{6} \cdot 3^{2} \cdot 5 \) |
\( - 2^{20} \cdot 3^{2} \cdot 5^{4} \) |
$1.46377$ |
$(-2a+1), (2), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.332493007$ |
$7.129054045$ |
2.120114989 |
\( \frac{313639412}{15} a + \frac{969281888}{75} \) |
\( \bigl[0\) , \( -\phi + 1\) , \( 0\) , \( -51 \phi + 43\) , \( -53 \phi + 190\bigr] \) |
${y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(-51\phi+43\right){x}-53\phi+190$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.