Properties

Label 2.2.5.1-2511.2-f2
Base field \(\Q(\sqrt{5}) \)
Conductor norm \( 2511 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{5}) \)

Generator \(\phi\), with minimal polynomial \( x^{2} - x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -1, 1]);
 

Weierstrass equation

\({y}^2+\phi{x}{y}+{y}={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(151\phi-18\right){x}+4776\phi+2508\)
sage: E = EllipticCurve([K([0,1]),K([-1,-1]),K([1,0]),K([-18,151]),K([2508,4776])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([-1,-1]),Polrev([1,0]),Polrev([-18,151]),Polrev([2508,4776])], K);
 
magma: E := EllipticCurve([K![0,1],K![-1,-1],K![1,0],K![-18,151],K![2508,4776]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((45\phi-27)\) = \((3)^{2}\cdot(5\phi-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 2511 \) = \(9^{2}\cdot31\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-3645\phi+2187)\) = \((3)^{6}\cdot(5\phi-3)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -16474671 \) = \(-9^{6}\cdot31\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{6130703730739448}{31} \phi + \frac{9919687011293045}{31} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{21}{4} \phi - \frac{37}{4} : \frac{29}{4} \phi + \frac{17}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1.2571280238062660584415179052279250659 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 1.1244094870603139274354747507846390588 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((3)\) \(9\) \(2\) \(I_0^{*}\) Additive \(1\) \(2\) \(6\) \(0\)
\((5\phi-3)\) \(31\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 2511.2-f consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.