Base field \(\Q(\sqrt{5}) \)
Generator \(\phi\), with minimal polynomial \( x^{2} - x - 1 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Invariants
Conductor: | \((45)\) | = | \((-2\phi+1)^{2}\cdot(3)^{2}\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 2025 \) | = | \(5^{2}\cdot9^{2}\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((-16875)\) | = | \((-2\phi+1)^{8}\cdot(3)^{3}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 284765625 \) | = | \(5^{8}\cdot9^{3}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( 292658282496 \phi - 473531056128 \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z[(1+\sqrt{-75})/2]\) | (potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $N(\mathrm{U}(1))$ |
Mordell-Weil group
Rank: | \(1\) |
Generator | $\left(10 \phi + 10 : 7 : 1\right)$ |
Height | \(0.76820017506647239049538495331486405833\) |
Torsion structure: | \(\Z/3\Z\) |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| |
Torsion generator: | $\left(15 \phi + 15 : -85 \phi - 53 : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 1 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(1\) | ||
Regulator: | \( 0.76820017506647239049538495331486405833 \) | ||
Period: | \( 3.2853225006681337818566420173600383843 \) | ||
Tamagawa product: | \( 6 \) = \(3\cdot2\) | ||
Torsion order: | \(3\) | ||
Leading coefficient: | \( 1.5048948097335254003326907100197594375 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((-2\phi+1)\) | \(5\) | \(3\) | \(IV^{*}\) | Additive | \(-1\) | \(2\) | \(8\) | \(0\) |
\((3)\) | \(9\) | \(2\) | \(III\) | Additive | \(1\) | \(2\) | \(3\) | \(0\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(3\) | 3B.1.2 |
\(5\) | 5Cs[2] |
For all other primes \(p\), the image is the normalizer of a split Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=+1\) or the normalizer of a nonsplit Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=-1\).
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
3, 5, 15, 25 and 75.
Its isogeny class
2025.1-d
consists of curves linked by isogenies of
degrees dividing 75.
Base change
This elliptic curve is a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.