Properties

Label 2.2.5.1-2025.1-d1
Base field \(\Q(\sqrt{5}) \)
Conductor norm \( 2025 \)
CM yes (\(-75\))
Base change no
Q-curve yes
Torsion order \( 3 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{5}) \)

Generator \(\phi\), with minimal polynomial \( x^{2} - x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -1, 1]);
 

Weierstrass equation

\({y}^2+{y}={x}^3+\left(-180\phi-210\right){x}-2300\phi-1044\)
sage: E = EllipticCurve([K([0,0]),K([0,0]),K([1,0]),K([-210,-180]),K([-1044,-2300])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([0,0]),Polrev([1,0]),Polrev([-210,-180]),Polrev([-1044,-2300])], K);
 
magma: E := EllipticCurve([K![0,0],K![0,0],K![1,0],K![-210,-180],K![-1044,-2300]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((45)\) = \((-2\phi+1)^{2}\cdot(3)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 2025 \) = \(5^{2}\cdot9^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-16875)\) = \((-2\phi+1)^{8}\cdot(3)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 284765625 \) = \(5^{8}\cdot9^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 292658282496 \phi - 473531056128 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z[(1+\sqrt{-75})/2]\) (potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $N(\mathrm{U}(1))$

Mordell-Weil group

Rank: \(1\)
Generator $\left(10 \phi + 10 : 7 : 1\right)$
Height \(0.76820017506647239049538495331486405833\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(15 \phi + 15 : -85 \phi - 53 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.76820017506647239049538495331486405833 \)
Period: \( 3.2853225006681337818566420173600383843 \)
Tamagawa product: \( 6 \)  =  \(3\cdot2\)
Torsion order: \(3\)
Leading coefficient: \( 1.5048948097335254003326907100197594375 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2\phi+1)\) \(5\) \(3\) \(IV^{*}\) Additive \(-1\) \(2\) \(8\) \(0\)
\((3)\) \(9\) \(2\) \(III\) Additive \(1\) \(2\) \(3\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.2
\(5\) 5Cs[2]

For all other primes \(p\), the image is the normalizer of a split Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=+1\) or the normalizer of a nonsplit Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=-1\).

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 5, 15, 25 and 75.
Its isogeny class 2025.1-d consists of curves linked by isogenies of degrees dividing 75.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.