Properties

Label 2.2.497.1-4.1-b2
Base field \(\Q(\sqrt{497}) \)
Conductor norm \( 4 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{497}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 124 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-124, -1, 1]))
 
gp: K = nfinit(Polrev([-124, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-124, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-842727a-8972297\right){x}+1405587529a+14964936759\)
sage: E = EllipticCurve([K([1,0]),K([1,0]),K([1,1]),K([-8972297,-842727]),K([14964936759,1405587529])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([1,0]),Polrev([1,1]),Polrev([-8972297,-842727]),Polrev([14964936759,1405587529])], K);
 
magma: E := EllipticCurve([K![1,0],K![1,0],K![1,1],K![-8972297,-842727],K![14964936759,1405587529]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2)\) = \((17a-198)\cdot(17a+181)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 4 \) = \(2\cdot2\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-6432a+74912)\) = \((17a-198)^{5}\cdot(17a+181)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 16384 \) = \(2^{5}\cdot2^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{496068661001}{512} a + \frac{1503546340873}{128} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{1757}{16} a + \frac{4675}{4} : \frac{9909}{64} a + \frac{26455}{16} : 1\right)$
Height \(0.52151445512892599913102322022120919413\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.52151445512892599913102322022120919413 \)
Period: \( 22.064129172836300213727081559521388475 \)
Tamagawa product: \( 5 \)  =  \(5\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 5.1614883038477973820792859216003150172 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((17a-198)\) \(2\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)
\((17a+181)\) \(2\) \(1\) \(I_{9}\) Non-split multiplicative \(1\) \(1\) \(9\) \(9\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 4.1-b consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.