Properties

Label 2.2.44.1-392.1-c1
Base field \(\Q(\sqrt{11}) \)
Conductor \((14a+42)\)
Conductor norm \( 392 \)
CM no
Base change yes: 56.a4,13552.p4
Q-curve yes
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands for: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{11}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 11 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-11, 0, 1]))
 
gp: K = nfinit(Pol(Vecrev([-11, 0, 1])));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-11, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(18a+61\right){x}+342a+1134\)
sage: E = EllipticCurve([K([1,1]),K([0,1]),K([0,0]),K([61,18]),K([1134,342])])
 
gp: E = ellinit([Pol(Vecrev([1,1])),Pol(Vecrev([0,1])),Pol(Vecrev([0,0])),Pol(Vecrev([61,18])),Pol(Vecrev([1134,342]))], K);
 
magma: E := EllipticCurve([K![1,1],K![0,1],K![0,0],K![61,18],K![1134,342]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((14a+42)\) = \((a+3)^{3}\cdot(a+2)\cdot(a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 392 \) = \(2^{3}\cdot7\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-28)\) = \((a+3)^{4}\cdot(a+2)\cdot(a-2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 784 \) = \(2^{4}\cdot7\cdot7\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{432}{7} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a + 4 : -12 a - 39 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 24.4747121231892 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\cdot1\)
Torsion order: \(4\)
Leading coefficient: \( 1.84485084010411 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+3)\) \(2\) \(2\) \(III\) Additive \(1\) \(3\) \(4\) \(0\)
\((a+2)\) \(7\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((a-2)\) \(7\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 392.1-c consists of curves linked by isogenies of degrees dividing 4.

Base change

This curve is the base change of elliptic curves 56.a4, 13552.p4, defined over \(\Q\), so it is also a \(\Q\)-curve.