Base field \(\Q(\sqrt{11}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 11 \); class number \(1\).
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-11, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^2 - 11)
gp (2.8): K = nfinit(a^2 - 11);
Weierstrass equation
magma: E := ChangeRing(EllipticCurve([a + 1, a, 0, -1602*a - 5312, -68004*a - 225544]),K);
sage: E = EllipticCurve(K, [a + 1, a, 0, -1602*a - 5312, -68004*a - 225544])
gp (2.8): E = ellinit([a + 1, a, 0, -1602*a - 5312, -68004*a - 225544],K)
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
\(\mathfrak{N} \) | = | \((10 a + 30)\) | = | \( \left(a + 3\right)^{3} \cdot \left(a - 4\right) \cdot \left(-a - 4\right) \) |
magma: Conductor(E);
sage: E.conductor()
| ||||
\(N(\mathfrak{N}) \) | = | \( 200 \) | = | \( 2^{3} \cdot 5^{2} \) |
magma: Norm(Conductor(E));
sage: E.conductor().norm()
| ||||
\(\mathfrak{D}\) | = | \((80)\) | = | \( \left(a + 3\right)^{8} \cdot \left(a - 4\right) \cdot \left(-a - 4\right) \) |
magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
| ||||
\(N(\mathfrak{D})\) | = | \( 6400 \) | = | \( 2^{8} \cdot 5^{2} \) |
magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
| ||||
\(j\) | = | \( \frac{132304644}{5} \) | ||
magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
| ||||
\( \text{End} (E) \) | = | \(\Z\) | (no Complex Multiplication ) | |
magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
| ||||
\( \text{ST} (E) \) | = | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank not available.magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()
Regulator: not available
magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())
Torsion subgroup
Structure: | \(\Z/2\Z\) |
---|---|
magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
| |
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
| |
Generator: | $\left(-\frac{19}{2} a - 31 : \frac{81}{4} a + \frac{271}{4} : 1\right)$ |
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[3]
|
Local data at primes of bad reduction
magma: LocalInformation(E);
sage: E.local_data()
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\( \left(a + 3\right) \) | \(2\) | \(4\) | \(I_{1}^*\) | Additive | \(-1\) | \(3\) | \(8\) | \(0\) |
\( \left(a - 4\right) \) | \(5\) | \(1\) | \(I_{1}\) | Split multiplicative | \(-1\) | \(1\) | \(1\) | \(1\) |
\( \left(-a - 4\right) \) | \(5\) | \(1\) | \(I_{1}\) | Split multiplicative | \(-1\) | \(1\) | \(1\) | \(1\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2 and 4.
Its isogeny class
200.1-j
consists of curves linked by isogenies of
degrees dividing 4.