Properties

Base field \(\Q(\sqrt{11}) \)
Label 2.2.44.1-200.1-j4
Conductor \((10 a + 30)\)
Conductor norm \( 200 \)
CM no
base-change yes: 40.a1,9680.q1
Q-curve yes
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field \(\Q(\sqrt{11}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 11 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-11, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^2 - 11)
 
gp (2.8): K = nfinit(a^2 - 11);
 

Weierstrass equation

\( y^2 + \left(a + 1\right) x y = x^{3} + a x^{2} + \left(-1602 a - 5312\right) x - 68004 a - 225544 \)
magma: E := ChangeRing(EllipticCurve([a + 1, a, 0, -1602*a - 5312, -68004*a - 225544]),K);
 
sage: E = EllipticCurve(K, [a + 1, a, 0, -1602*a - 5312, -68004*a - 225544])
 
gp (2.8): E = ellinit([a + 1, a, 0, -1602*a - 5312, -68004*a - 225544],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((10 a + 30)\) = \( \left(a + 3\right)^{3} \cdot \left(a - 4\right) \cdot \left(-a - 4\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 200 \) = \( 2^{3} \cdot 5^{2} \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((80)\) = \( \left(a + 3\right)^{8} \cdot \left(a - 4\right) \cdot \left(-a - 4\right) \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 6400 \) = \( 2^{8} \cdot 5^{2} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( \frac{132304644}{5} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(-\frac{19}{2} a - 31 : \frac{81}{4} a + \frac{271}{4} : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a + 3\right) \) \(2\) \(4\) \(I_{1}^*\) Additive \(-1\) \(3\) \(8\) \(0\)
\( \left(a - 4\right) \) \(5\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\( \left(-a - 4\right) \) \(5\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 200.1-j consists of curves linked by isogenies of degrees dividing 4.

Base change

This curve is the base-change of elliptic curves 40.a1, 9680.q1, defined over \(\Q\), so it is also a \(\Q\)-curve.