Properties

Label 2.2.44.1-200.1-j1
Base field \(\Q(\sqrt{11}) \)
Conductor norm \( 200 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{11}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 11 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-11, 0, 1]))
 
gp: K = nfinit(Polrev([-11, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-11, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(198a+658\right){x}-4566a-15144\)
sage: E = EllipticCurve([K([1,1]),K([0,1]),K([0,0]),K([658,198]),K([-15144,-4566])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([0,1]),Polrev([0,0]),Polrev([658,198]),Polrev([-15144,-4566])], K);
 
magma: E := EllipticCurve([K![1,1],K![0,1],K![0,0],K![658,198],K![-15144,-4566]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((10a+30)\) = \((a+3)^{3}\cdot(a-4)\cdot(-a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 200 \) = \(2^{3}\cdot5\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-10000)\) = \((a+3)^{8}\cdot(a-4)^{4}\cdot(-a-4)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 100000000 \) = \(2^{8}\cdot5^{4}\cdot5^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{237276}{625} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(5 a + 19 : -52 a - 172 : 1\right)$
Height \(0.54450978138853707352724617614007737632\)
Torsion structure: \(\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(10 a + 34 : -117 a - 387 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.54450978138853707352724617614007737632 \)
Period: \( 4.4069607825039343348443741533493637872 \)
Tamagawa product: \( 64 \)  =  \(2^{2}\cdot2^{2}\cdot2^{2}\)
Torsion order: \(4\)
Leading coefficient: \( 2.8940665935406408805376920953897229880 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+3)\) \(2\) \(4\) \(I_{1}^{*}\) Additive \(-1\) \(3\) \(8\) \(0\)
\((a-4)\) \(5\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((-a-4)\) \(5\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 200.1-j consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 40.a4
\(\Q\) 9680.q4