Properties

Base field \(\Q(\sqrt{11}) \)
Label 2.2.44.1-200.1-c
Conductor 200.1
Rank not recorded

Related objects

Learn more about

Base field \(\Q(\sqrt{11}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 11 \); class number \(1\).

Elliptic curves in class 200.1-c over \(\Q(\sqrt{11}) \)

Isogeny class 200.1-c contains 4 curves linked by isogenies of degrees dividing 4.

Curve label Weierstrass Coefficients
200.1-c1 \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 6 a - 18\) , \( -52 a + 173\bigr] \)
200.1-c2 \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -7 a - 22\) , \( -29 a - 96\bigr] \)
200.1-c3 \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -57 a - 197\) , \( 336 a + 1119\bigr] \)
200.1-c4 \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -117 a - 387\) , \( -1500 a - 4975\bigr] \)

Rank

Rank not yet determined.

Isogeny matrix

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph