Learn more

Refine search


Results (16 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
80.1-a1 80.1-a \(\Q(\sqrt{10}) \) \( 2^{4} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.34365470$ 3.270950819 \( -\frac{20720464}{15625} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -36\) , \( 140\bigr] \) ${y}^2={x}^{3}-{x}^{2}-36{x}+140$
80.1-a2 80.1-a \(\Q(\sqrt{10}) \) \( 2^{4} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.34365470$ 3.270950819 \( \frac{21296}{25} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 4\) , \( -4\bigr] \) ${y}^2={x}^{3}-{x}^{2}+4{x}-4$
80.1-a3 80.1-a \(\Q(\sqrt{10}) \) \( 2^{4} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $20.68730941$ 3.270950819 \( \frac{16384}{5} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -1\) , \( 0\bigr] \) ${y}^2={x}^{3}-{x}^{2}-{x}$
80.1-a4 80.1-a \(\Q(\sqrt{10}) \) \( 2^{4} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $20.68730941$ 3.270950819 \( \frac{488095744}{125} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -41\) , \( 116\bigr] \) ${y}^2={x}^{3}-{x}^{2}-41{x}+116$
80.1-b1 80.1-b \(\Q(\sqrt{10}) \) \( 2^{4} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.933393502$ $8.151961419$ 2.406173221 \( \frac{237276}{625} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 4\) , \( 6\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+4{x}+6$
80.1-b2 80.1-b \(\Q(\sqrt{10}) \) \( 2^{4} \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.866787005$ $32.60784567$ 2.406173221 \( \frac{148176}{25} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -1\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-{x}$
80.1-b3 80.1-b \(\Q(\sqrt{10}) \) \( 2^{4} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.933393502$ $16.30392283$ 2.406173221 \( \frac{55296}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -8\) , \( -8\bigr] \) ${y}^2={x}^{3}-8{x}-8$
80.1-b4 80.1-b \(\Q(\sqrt{10}) \) \( 2^{4} \cdot 5 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.933393502$ $32.60784567$ 2.406173221 \( \frac{132304644}{5} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -26\) , \( 40\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-26{x}+40$
80.1-c1 80.1-c \(\Q(\sqrt{10}) \) \( 2^{4} \cdot 5 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $8.151961419$ 1.288938274 \( \frac{237276}{625} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 13\) , \( 34\bigr] \) ${y}^2={x}^{3}+13{x}+34$
80.1-c2 80.1-c \(\Q(\sqrt{10}) \) \( 2^{4} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $32.60784567$ 1.288938274 \( \frac{148176}{25} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -7\) , \( 6\bigr] \) ${y}^2={x}^{3}-7{x}+6$
80.1-c3 80.1-c \(\Q(\sqrt{10}) \) \( 2^{4} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $16.30392283$ 1.288938274 \( \frac{55296}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -2\) , \( -1\bigr] \) ${y}^2={x}^{3}-2{x}-1$
80.1-c4 80.1-c \(\Q(\sqrt{10}) \) \( 2^{4} \cdot 5 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $32.60784567$ 1.288938274 \( \frac{132304644}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -107\) , \( 426\bigr] \) ${y}^2={x}^{3}-107{x}+426$
80.1-d1 80.1-d \(\Q(\sqrt{10}) \) \( 2^{4} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.137812304$ $10.34365470$ 1.352331812 \( -\frac{20720464}{15625} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( -7\) , \( 9\bigr] \) ${y}^2+a{x}{y}={x}^{3}-7{x}+9$
80.1-d2 80.1-d \(\Q(\sqrt{10}) \) \( 2^{4} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.413436914$ $10.34365470$ 1.352331812 \( \frac{21296}{25} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( 3\) , \( 1\bigr] \) ${y}^2+a{x}{y}={x}^{3}+3{x}+1$
80.1-d3 80.1-d \(\Q(\sqrt{10}) \) \( 2^{4} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.206718457$ $20.68730941$ 1.352331812 \( \frac{16384}{5} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -5\) , \( -5\bigr] \) ${y}^2={x}^{3}+{x}^{2}-5{x}-5$
80.1-d4 80.1-d \(\Q(\sqrt{10}) \) \( 2^{4} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.068906152$ $20.68730941$ 1.352331812 \( \frac{488095744}{125} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -165\) , \( 763\bigr] \) ${y}^2={x}^{3}+{x}^{2}-165{x}+763$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.