Properties

Label 2.2.40.1-225.1-e1
Base field \(\Q(\sqrt{10}) \)
Conductor norm \( 225 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{10}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 10 \); class number \(2\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-10, 0, 1]))
 
gp: K = nfinit(Polrev([-10, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-10, 0, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-184a-573\right){x}+2936a+9288\)
sage: E = EllipticCurve([K([0,1]),K([-1,-1]),K([1,0]),K([-573,-184]),K([9288,2936])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([-1,-1]),Polrev([1,0]),Polrev([-573,-184]),Polrev([9288,2936])], K);
 
magma: E := EllipticCurve([K![0,1],K![-1,-1],K![1,0],K![-573,-184],K![9288,2936]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((15)\) = \((3,a+1)\cdot(3,a+2)\cdot(5,a)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 225 \) = \(3\cdot3\cdot5^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-2250a-12375)\) = \((3,a+1)^{6}\cdot(3,a+2)^{2}\cdot(5,a)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 102515625 \) = \(3^{6}\cdot3^{2}\cdot5^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{654080}{729} a - \frac{990400}{729} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(3 a + 8 : 5 a + 13 : 1\right)$
Height \(0.17198825967942292614876706832690715748\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-6 a - \frac{41}{2} : \frac{41}{4} a + \frac{59}{2} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.17198825967942292614876706832690715748 \)
Period: \( 8.9723117735273219509740398722952362185 \)
Tamagawa product: \( 24 \)  =  \(( 2 \cdot 3 )\cdot2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 2.9278876551554832465514636120300438634 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((3,a+1)\) \(3\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)
\((3,a+2)\) \(3\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((5,a)\) \(5\) \(2\) \(I_0^{*}\) Additive \(1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 225.1-e consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.