Properties

Label 2.2.40.1-225.1-a4
Base field \(\Q(\sqrt{10}) \)
Conductor norm \( 225 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{10}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 10 \); class number \(2\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-10, 0, 1]))
 
gp: K = nfinit(Polrev([-10, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-10, 0, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(2427a-7688\right){x}-113058a+357519\)
sage: E = EllipticCurve([K([0,1]),K([1,0]),K([1,1]),K([-7688,2427]),K([357519,-113058])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([1,0]),Polrev([1,1]),Polrev([-7688,2427]),Polrev([357519,-113058])], K);
 
magma: E := EllipticCurve([K![0,1],K![1,0],K![1,1],K![-7688,2427],K![357519,-113058]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((15)\) = \((3,a+1)\cdot(3,a+2)\cdot(5,a)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 225 \) = \(3\cdot3\cdot5^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((30375)\) = \((3,a+1)^{5}\cdot(3,a+2)^{5}\cdot(5,a)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 922640625 \) = \(3^{5}\cdot3^{5}\cdot5^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{58591911104}{243} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-11 a + \frac{71}{2} : -\frac{73}{4} a + \frac{109}{2} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 10.692669017164465597404054602864401339 \)
Tamagawa product: \( 4 \)  =  \(1\cdot1\cdot2^{2}\)
Torsion order: \(2\)
Leading coefficient: \( 1.6906594180276885285452407076161502172 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((3,a+1)\) \(3\) \(1\) \(I_{5}\) Non-split multiplicative \(1\) \(1\) \(5\) \(5\)
\((3,a+2)\) \(3\) \(1\) \(I_{5}\) Non-split multiplicative \(1\) \(1\) \(5\) \(5\)
\((5,a)\) \(5\) \(4\) \(I_0^{*}\) Additive \(1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.1.4

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 225.1-a consists of curves linked by isogenies of degrees dividing 10.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.