Base field \(\Q(\sqrt{10}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 10 \); class number \(2\).
Elliptic curves in class 135.4-h over \(\Q(\sqrt{10}) \)
Isogeny class 135.4-h contains only one elliptic curve.
Curve label | Weierstrass Coefficients |
---|---|
135.4-h1 | \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 18 a - 51\) , \( -81 a + 259\bigr] \) |
Rank
Rank: \( 1 \)Isogeny matrix
\(\left(\begin{array}{r} 1 \end{array}\right)\)