Base field \(\Q(\sqrt{10}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 10 \); class number \(2\).
Elliptic curves in class 135.4-g over \(\Q(\sqrt{10}) \)
Isogeny class 135.4-g contains only one elliptic curve.
Curve label | Weierstrass Coefficients |
---|---|
135.4-g1 | \( \bigl[a + 1\) , \( 0\) , \( 1\) , \( -a + 2\) , \( -a + 3\bigr] \) |
Rank
Rank: \( 1 \)Isogeny matrix
\(\left(\begin{array}{r} 1 \end{array}\right)\)