Base field \(\Q(\sqrt{10}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 10 \); class number \(2\).
Elliptic curves in class 135.4-d over \(\Q(\sqrt{10}) \)
Isogeny class 135.4-d contains 2 curves linked by isogenies of degree 3.
Rank
Rank: \( 1 \)Isogeny matrix
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)