Base field \(\Q(\sqrt{10}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 10 \); class number \(2\).
Elliptic curves in class 135.4-b over \(\Q(\sqrt{10}) \)
Isogeny class 135.4-b contains only one elliptic curve.
Curve label | Weierstrass Coefficients |
---|---|
135.4-b1 | \( \bigl[a\) , \( a\) , \( a\) , \( -4 a - 3\) , \( -5 a + 18\bigr] \) |
Rank
Rank: \( 1 \)Isogeny matrix
\(\left(\begin{array}{r} 1 \end{array}\right)\)