Properties

Label 2.2.40.1-135.3-d2
Base field \(\Q(\sqrt{10}) \)
Conductor norm \( 135 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{10}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 10 \); class number \(2\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-10, 0, 1]))
 
gp: K = nfinit(Polrev([-10, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-10, 0, 1]);
 

Weierstrass equation

\({y}^2+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-2a+5\right){x}+a-7\)
sage: E = EllipticCurve([K([0,0]),K([-1,1]),K([1,0]),K([5,-2]),K([-7,1])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([-1,1]),Polrev([1,0]),Polrev([5,-2]),Polrev([-7,1])], K);
 
magma: E := EllipticCurve([K![0,0],K![-1,1],K![1,0],K![5,-2],K![-7,1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-\frac{5}{9} a + \frac{1}{18} : -\frac{29}{108} a + \frac{19}{54} : 1\right)$$1.1039324503871601448308261236017734309$$\infty$

Invariants

Conductor: $\frak{N}$ = \((-4a-5)\) = \((3,a+2)^{3}\cdot(5,a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 135 \) = \(3^{3}\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $4a+5$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((4a+5)\) = \((3,a+2)^{3}\cdot(5,a)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( -135 \) = \(-3^{3}\cdot5\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{171180032}{5} a + 108265472 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 1.1039324503871601448308261236017734309 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 2.2078649007743202896616522472035468618 \)
Global period: $\Omega(E/K)$ \( 8.9526445919485922303307789762000533855 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 1 \)  =  \(1\cdot1\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(1\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 3.1253153403705000282676856882018262769 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 3.125315340 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 8.952645 \cdot 2.207865 \cdot 1 } { {1^2 \cdot 6.324555} } \approx 3.125315340$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 2 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((3,a+2)\) \(3\) \(1\) \(II\) Additive \(1\) \(3\) \(3\) \(0\)
\((5,a)\) \(5\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 135.3-d consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.