Base field \(\Q(\sqrt{10}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 10 \); class number \(2\).
Elliptic curves in class 135.3-c over \(\Q(\sqrt{10}) \)
Isogeny class 135.3-c contains only one elliptic curve.
Curve label | Weierstrass Coefficients |
---|---|
135.3-c1 | \( \bigl[a\) , \( -a\) , \( 0\) , \( 11 a - 98\) , \( -118 a + 193\bigr] \) |
Rank
Rank: \( 0 \)Isogeny matrix
\(\left(\begin{array}{r} 1 \end{array}\right)\)