Properties

Label 2.2.37.1-576.1-y5
Base field \(\Q(\sqrt{37}) \)
Conductor norm \( 576 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{37}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 9 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-9, -1, 1]))
 
gp: K = nfinit(Polrev([-9, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-9, -1, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}-{x}^{2}-64{x}+220\)
sage: E = EllipticCurve([K([0,0]),K([-1,0]),K([0,0]),K([-64,0]),K([220,0])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([-1,0]),Polrev([0,0]),Polrev([-64,0]),Polrev([220,0])], K);
 
magma: E := EllipticCurve([K![0,0],K![-1,0],K![0,0],K![-64,0],K![220,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((24)\) = \((a-3)\cdot(a+2)\cdot(2)^{3}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 576 \) = \(3\cdot3\cdot4^{3}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((3072)\) = \((a-3)\cdot(a+2)\cdot(2)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 9437184 \) = \(3\cdot3\cdot4^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{28756228}{3} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{366}{49} : -\frac{1144}{343} a + \frac{572}{343} : 1\right)$
Height \(4.4010479325908458162365522246598711719\)
Torsion structure: \(\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(6 : -4 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 4.4010479325908458162365522246598711719 \)
Period: \( 18.602238951643222078128233801763314336 \)
Tamagawa product: \( 2 \)  =  \(1\cdot1\cdot2\)
Torsion order: \(4\)
Leading coefficient: \( 3.3648093638334298075035779664147266652 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a-3)\) \(3\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((a+2)\) \(3\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((2)\) \(4\) \(2\) \(III^{*}\) Additive \(-1\) \(3\) \(10\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 576.1-y consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 24.a2
\(\Q\) 32856.g2