Properties

Label 2.2.37.1-196.1-d1
Base field \(\Q(\sqrt{37}) \)
Conductor norm \( 196 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{37}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 9 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-9, -1, 1]))
 
gp: K = nfinit(Polrev([-9, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-9, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(907a-3788\right){x}+29235a-109976\)
sage: E = EllipticCurve([K([1,1]),K([0,0]),K([0,0]),K([-3788,907]),K([-109976,29235])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([0,0]),Polrev([0,0]),Polrev([-3788,907]),Polrev([-109976,29235])], K);
 
magma: E := EllipticCurve([K![1,1],K![0,0],K![0,0],K![-3788,907],K![-109976,29235]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((14)\) = \((2)\cdot(-a-1)\cdot(a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 196 \) = \(4\cdot7\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-100156a+243530)\) = \((2)\cdot(-a-1)^{3}\cdot(a-2)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -55365148804 \) = \(-4\cdot7^{3}\cdot7^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{195023039462640289}{40353607} a - \frac{963487859994700925}{80707214} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{139}{9} a - 6 : \frac{1022}{27} a + \frac{182}{3} : 1\right)$
Height \(1.2758952112761822280201392951096659486\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.2758952112761822280201392951096659486 \)
Period: \( 0.26230195845171596054902038265320575832 \)
Tamagawa product: \( 27 \)  =  \(1\cdot3\cdot3^{2}\)
Torsion order: \(1\)
Leading coefficient: \( 2.9710464276084496258542969930697530838 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2)\) \(4\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((-a-1)\) \(7\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)
\((a-2)\) \(7\) \(9\) \(I_{9}\) Split multiplicative \(-1\) \(1\) \(9\) \(9\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3 and 9.
Its isogeny class 196.1-d consists of curves linked by isogenies of degrees dividing 9.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.