Base field \(\Q(\sqrt{33}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x - 8 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-8, -1, 1]))
gp: K = nfinit(Polrev([-8, -1, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-8, -1, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([1,0]),K([0,-1]),K([0,1]),K([-44975,-18960]),K([-5227242,-2203466])])
gp: E = ellinit([Polrev([1,0]),Polrev([0,-1]),Polrev([0,1]),Polrev([-44975,-18960]),Polrev([-5227242,-2203466])], K);
magma: E := EllipticCurve([K![1,0],K![0,-1],K![0,1],K![-44975,-18960],K![-5227242,-2203466]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((-28a-63)\) | = | \((-4a-9)\cdot(7)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 539 \) | = | \(11\cdot49\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((1294139)\) | = | \((-4a-9)^{2}\cdot(7)^{6}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 1674795751321 \) | = | \(11^{2}\cdot49^{6}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( \frac{15124197817}{1294139} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(1\) |
Generator | $\left(-\frac{323}{9} a - \frac{775}{9} : -\frac{1313}{9} a - \frac{9299}{27} : 1\right)$ |
Height | \(0.59196435115015681411643743834280530843\) |
Torsion structure: | \(\Z/2\Z\) |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| |
Torsion generator: | $\left(-25 a - \frac{241}{4} : 12 a + \frac{241}{8} : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 1 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(1\) | ||
Regulator: | \( 0.59196435115015681411643743834280530843 \) | ||
Period: | \( 3.2101873408696119145423660433455397356 \) | ||
Tamagawa product: | \( 12 \) = \(2\cdot( 2 \cdot 3 )\) | ||
Torsion order: | \(2\) | ||
Leading coefficient: | \( 1.9848158161738105597445225579762314471 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((-4a-9)\) | \(11\) | \(2\) | \(I_{2}\) | Non-split multiplicative | \(1\) | \(1\) | \(2\) | \(2\) |
\((7)\) | \(49\) | \(6\) | \(I_{6}\) | Split multiplicative | \(-1\) | \(1\) | \(6\) | \(6\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2.
Its isogeny class
539.1-e
consists of curves linked by isogenies of
degree 2.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
Base field | Curve |
---|---|
\(\Q\) | 693.a1 |
\(\Q\) | 847.a1 |