Properties

Label 2.2.33.1-528.1-d1
Base field \(\Q(\sqrt{33}) \)
Conductor norm \( 528 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{33}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 8 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-8, -1, 1]))
 
gp: K = nfinit(Polrev([-8, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-8, -1, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}+{x}^{2}+3{x}\)
sage: E = EllipticCurve([K([0,0]),K([1,0]),K([0,0]),K([3,0]),K([0,0])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([1,0]),Polrev([0,0]),Polrev([3,0]),Polrev([0,0])], K);
 
magma: E := EllipticCurve([K![0,0],K![1,0],K![0,0],K![3,0],K![0,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-8a+4)\) = \((-a-2)^{2}\cdot(-a+3)^{2}\cdot(-2a+7)\cdot(-4a-9)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 528 \) = \(2^{2}\cdot2^{2}\cdot3\cdot11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-1584)\) = \((-a-2)^{4}\cdot(-a+3)^{4}\cdot(-2a+7)^{4}\cdot(-4a-9)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 2509056 \) = \(2^{4}\cdot2^{4}\cdot3^{4}\cdot11^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{131072}{99} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(0 : 0 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 7.0560845931254067384156322461243838956 \)
Tamagawa product: \( 8 \)  =  \(1\cdot1\cdot2^{2}\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 2.4566133323927694351812693276056914619 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a-2)\) \(2\) \(1\) \(IV\) Additive \(-1\) \(2\) \(4\) \(0\)
\((-a+3)\) \(2\) \(1\) \(IV\) Additive \(-1\) \(2\) \(4\) \(0\)
\((-2a+7)\) \(3\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((-4a-9)\) \(11\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 528.1-d consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 132.b2
\(\Q\) 4356.d2