Properties

Label 2.2.33.1-400.1-a1
Base field \(\Q(\sqrt{33}) \)
Conductor norm \( 400 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 6 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{33}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 8 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-8, -1, 1]))
 
gp: K = nfinit(Polrev([-8, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-8, -1, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}-a{x}^{2}+\left(13371a-45087\right){x}-2153934a+7263670\)
sage: E = EllipticCurve([K([0,0]),K([0,-1]),K([0,0]),K([-45087,13371]),K([7263670,-2153934])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([0,-1]),Polrev([0,0]),Polrev([-45087,13371]),Polrev([7263670,-2153934])], K);
 
magma: E := EllipticCurve([K![0,0],K![0,-1],K![0,0],K![-45087,13371],K![7263670,-2153934]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((20)\) = \((-a-2)^{2}\cdot(-a+3)^{2}\cdot(5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 400 \) = \(2^{2}\cdot2^{2}\cdot25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-4000000)\) = \((-a-2)^{8}\cdot(-a+3)^{8}\cdot(5)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 16000000000000 \) = \(2^{8}\cdot2^{8}\cdot25^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{20720464}{15625} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{1039}{4} a + 877 : \frac{79175}{8} a - 33375 : 1\right)$
Height \(0.97101242881648480175831093981596373324\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-61 a + 207 : -940 a + 3170 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.97101242881648480175831093981596373324 \)
Period: \( 5.1718273525295607477983640758133365882 \)
Tamagawa product: \( 54 \)  =  \(3\cdot3\cdot( 2 \cdot 3 )\)
Torsion order: \(6\)
Leading coefficient: \( 2.6226062529019794303222914496014950639 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a-2)\) \(2\) \(3\) \(IV^{*}\) Additive \(-1\) \(2\) \(8\) \(0\)
\((-a+3)\) \(2\) \(3\) \(IV^{*}\) Additive \(-1\) \(2\) \(8\) \(0\)
\((5)\) \(25\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 400.1-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 180.a2
\(\Q\) 2420.a2