Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
275.1-a1 275.1-a \(\Q(\sqrt{33}) \) \( 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.506787596$ $16.93058676$ 4.440859943 \( \frac{59319}{55} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 1\) , \( 0\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+{x}$
275.1-a2 275.1-a \(\Q(\sqrt{33}) \) \( 5^{2} \cdot 11 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $3.013575193$ $16.93058676$ 4.440859943 \( \frac{8120601}{3025} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -4\) , \( 3\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-4{x}+3$
275.1-a3 275.1-a \(\Q(\sqrt{33}) \) \( 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $6.027150387$ $4.232646692$ 4.440859943 \( \frac{2749884201}{73205} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -29\) , \( -52\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-29{x}-52$
275.1-a4 275.1-a \(\Q(\sqrt{33}) \) \( 5^{2} \cdot 11 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.506787596$ $16.93058676$ 4.440859943 \( \frac{22930509321}{6875} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -59\) , \( 190\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-59{x}+190$
275.1-b1 275.1-b \(\Q(\sqrt{33}) \) \( 5^{2} \cdot 11 \) $2$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.858870826$ $11.85112914$ 1.917440855 \( \frac{59319}{55} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( 299 a + 709\) , \( -3776 a - 8958\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(299a+709\right){x}-3776a-8958$
275.1-b2 275.1-b \(\Q(\sqrt{33}) \) \( 5^{2} \cdot 11 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.464717706$ $11.85112914$ 1.917440855 \( \frac{8120601}{3025} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( 1541 a - 5197\) , \( 32926 a - 111036\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(1541a-5197\right){x}+32926a-111036$
275.1-b3 275.1-b \(\Q(\sqrt{33}) \) \( 5^{2} \cdot 11 \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.116179426$ $11.85112914$ 1.917440855 \( \frac{2749884201}{73205} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -10741 a - 25481\) , \( 1005724 a + 2385860\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-10741a-25481\right){x}+1005724a+2385860$
275.1-b4 275.1-b \(\Q(\sqrt{33}) \) \( 5^{2} \cdot 11 \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.464717706$ $2.962782285$ 1.917440855 \( \frac{22930509321}{6875} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( 21781 a - 73452\) , \( 2959256 a - 9979444\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(21781a-73452\right){x}+2959256a-9979444$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.