Properties

Label 2.2.33.1-196.1-a1
Base field \(\Q(\sqrt{33}) \)
Conductor norm \( 196 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 6 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{33}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 8 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-8, -1, 1]))
 
gp: K = nfinit(Polrev([-8, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-8, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-62751a-148862\right){x}+14446740a+34271731\)
sage: E = EllipticCurve([K([1,0]),K([1,1]),K([1,1]),K([-148862,-62751]),K([34271731,14446740])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([1,1]),Polrev([1,1]),Polrev([-148862,-62751]),Polrev([34271731,14446740])], K);
 
magma: E := EllipticCurve([K![1,0],K![1,1],K![1,1],K![-148862,-62751],K![34271731,14446740]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((14)\) = \((-a-2)\cdot(-a+3)\cdot(7)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 196 \) = \(2\cdot2\cdot49\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-1835008)\) = \((-a-2)^{18}\cdot(-a+3)^{18}\cdot(7)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 3367254360064 \) = \(2^{18}\cdot2^{18}\cdot49\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{548347731625}{1835008} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(7 a + 17 : -1444 a - 3425 : 1\right)$
Height \(0.21042993391551442545014499703795694608\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(71 a + 169 : 340 a + 807 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.21042993391551442545014499703795694608 \)
Period: \( 7.0277081059000617705423007125374356141 \)
Tamagawa product: \( 324 \)  =  \(( 2 \cdot 3^{2} )\cdot( 2 \cdot 3^{2} )\cdot1\)
Torsion order: \(6\)
Leading coefficient: \( 4.6337944904264234381284725605620130002 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a-2)\) \(2\) \(18\) \(I_{18}\) Split multiplicative \(-1\) \(1\) \(18\) \(18\)
\((-a+3)\) \(2\) \(18\) \(I_{18}\) Split multiplicative \(-1\) \(1\) \(18\) \(18\)
\((7)\) \(49\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 6, 9 and 18.
Its isogeny class 196.1-a consists of curves linked by isogenies of degrees dividing 18.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 126.b2
\(\Q\) 1694.e2