Properties

Base field \(\Q(\sqrt{33}) \)
Label 2.2.33.1-192.1-f
Conductor 192.1
Rank not recorded

Related objects

Learn more about

Base field \(\Q(\sqrt{33}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 8 \); class number \(1\).

Elliptic curves in class 192.1-f over \(\Q(\sqrt{33}) \)

Isogeny class 192.1-f contains 6 curves linked by isogenies of degrees dividing 8.

Curve label Weierstrass Coefficients
192.1-f1 \( \bigl[0\) , \( -1\) , \( 0\) , \( 16\) , \( -180\bigr] \)
192.1-f2 \( \bigl[0\) , \( -1\) , \( 0\) , \( 1\) , \( 0\bigr] \)
192.1-f3 \( \bigl[0\) , \( -1\) , \( 0\) , \( -4\) , \( 4\bigr] \)
192.1-f4 \( \bigl[0\) , \( -1\) , \( 0\) , \( -24\) , \( -36\bigr] \)
192.1-f5 \( \bigl[0\) , \( -1\) , \( 0\) , \( -64\) , \( 220\bigr] \)
192.1-f6 \( \bigl[0\) , \( -1\) , \( 0\) , \( -384\) , \( -2772\bigr] \)

Rank

Rank not yet determined.

Isogeny matrix

\(\left(\begin{array}{rrrrrr} 1 & 8 & 4 & 2 & 8 & 4 \\ 8 & 1 & 2 & 4 & 4 & 8 \\ 4 & 2 & 1 & 2 & 2 & 4 \\ 2 & 4 & 2 & 1 & 4 & 2 \\ 8 & 4 & 2 & 4 & 1 & 8 \\ 4 & 8 & 4 & 2 & 8 & 1 \end{array}\right)\)

Isogeny graph