Properties

Base field \(\Q(\sqrt{33}) \)
Label 2.2.33.1-121.1-k
Conductor 121.1
Rank \( 1 \)

Related objects

Learn more

Base field \(\Q(\sqrt{33}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 8 \); class number \(1\).

Elliptic curves in class 121.1-k over \(\Q(\sqrt{33}) \)

Isogeny class 121.1-k contains 2 curves linked by isogenies of degree 11.

Curve label Weierstrass Coefficients
121.1-k1 \( \bigl[1\) , \( a + 1\) , \( 0\) , \( 2643 a - 8913\) , \( 124371 a - 419414\bigr] \)
121.1-k2 \( \bigl[1\) , \( a + 1\) , \( 0\) , \( 3 a - 3\) , \( -9 a + 34\bigr] \)

Rank

Rank: \( 1 \)

Isogeny matrix

\(\left(\begin{array}{rr} 1 & 11 \\ 11 & 1 \end{array}\right)\)

Isogeny graph