Properties

Base field \(\Q(\sqrt{33}) \)
Label 2.2.33.1-121.1-g
Conductor 121.1
Rank \( 1 \)

Related objects

Learn more

Base field \(\Q(\sqrt{33}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 8 \); class number \(1\).

Elliptic curves in class 121.1-g over \(\Q(\sqrt{33}) \)

Isogeny class 121.1-g contains 3 curves linked by isogenies of degrees dividing 25.

Curve label Weierstrass Coefficients
121.1-g1 \( \bigl[0\) , \( -a\) , \( 1\) , \( -688189 a - 1634447\) , \( -526275039 a - 1248442776\bigr] \)
121.1-g2 \( \bigl[0\) , \( -a\) , \( 1\) , \( -909 a - 2157\) , \( -44829 a - 106346\bigr] \)
121.1-g3 \( \bigl[0\) , \( -a\) , \( 1\) , \( -29 a - 67\) , \( 381 a + 904\bigr] \)

Rank

Rank: \( 1 \)

Isogeny matrix

\(\left(\begin{array}{rrr} 1 & 5 & 25 \\ 5 & 1 & 5 \\ 25 & 5 & 1 \end{array}\right)\)

Isogeny graph