Base field \(\Q(\sqrt{33}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x - 8 \); class number \(1\).
Elliptic curves in class 121.1-f over \(\Q(\sqrt{33}) \)
Isogeny class 121.1-f contains 4 curves linked by isogenies of degrees dividing 22.
Rank
Rank: \( 0 \)Isogeny matrix
\(\left(\begin{array}{rrrr} 1 & 11 & 22 & 2 \\ 11 & 1 & 2 & 22 \\ 22 & 2 & 1 & 11 \\ 2 & 22 & 11 & 1 \end{array}\right)\)