Base field \(\Q(\sqrt{33}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x - 8 \); class number \(1\).
Elliptic curves in class 121.1-e over \(\Q(\sqrt{33}) \)
Isogeny class 121.1-e contains 3 curves linked by isogenies of degrees dividing 25.
Rank
Rank: \( 1 \)Isogeny matrix
\(\left(\begin{array}{rrr} 1 & 5 & 25 \\ 5 & 1 & 5 \\ 25 & 5 & 1 \end{array}\right)\)