Properties

Label 2.2.33.1-1.1-a5
Base field \(\Q(\sqrt{33}) \)
Conductor norm \( 1 \)
CM yes (\(-99\))
Base change no
Q-curve yes
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{33}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 8 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-8, -1, 1]))
 
gp: K = nfinit(Polrev([-8, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-8, -1, 1]);
 

Weierstrass equation

\({y}^2+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(435a-1465\right){x}+7890a-26607\)
sage: E = EllipticCurve([K([0,0]),K([-1,1]),K([1,0]),K([-1465,435]),K([-26607,7890])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([-1,1]),Polrev([1,0]),Polrev([-1465,435]),Polrev([-26607,7890])], K);
 
magma: E := EllipticCurve([K![0,0],K![-1,1],K![1,0],K![-1465,435],K![-26607,7890]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1)\) = \((1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 1 \) = 1
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1)\) = \((1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1 \) = 1
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 6548115718144 a - 22082088337408 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z[(1+\sqrt{-99})/2]\) (potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $N(\mathrm{U}(1))$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 2.5625833948889038304671833042469964863 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 0.44608851057325477497259409528055363543 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
No primes of bad reduction.

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.2

For all other primes \(p\), the image is a Borel subgroup if \(p=11\), the normalizer of a split Cartan subgroup if \(\left(\frac{ -11 }{p}\right)=+1\) or the normalizer of a nonsplit Cartan subgroup if \(\left(\frac{ -11 }{p}\right)=-1\).

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 9, 11, 33 and 99.
Its isogeny class 1.1-a consists of curves linked by isogenies of degrees dividing 99.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.