Properties

Label 2.2.301.1-25.1-b1
Base field \(\Q(\sqrt{301}) \)
Conductor norm \( 25 \)
CM no
Base change no
Q-curve yes
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{301}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 75 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-75, -1, 1]))
 
gp: K = nfinit(Polrev([-75, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-75, -1, 1]);
 

Weierstrass equation

\({y}^2+{y}={x}^{3}+\left(1311a-12028\right){x}+130778a-1199846\)
sage: E = EllipticCurve([K([0,0]),K([0,0]),K([1,0]),K([-12028,1311]),K([-1199846,130778])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([0,0]),Polrev([1,0]),Polrev([-12028,1311]),Polrev([-1199846,130778])], K);
 
magma: E := EllipticCurve([K![0,0],K![0,0],K![1,0],K![-12028,1311],K![-1199846,130778]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((5)\) = \((-6a+55)\cdot(6a+49)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 25 \) = \(5\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-125)\) = \((-6a+55)^{3}\cdot(6a+49)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 15625 \) = \(5^{3}\cdot5^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{110592}{125} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{160}{9} a + \frac{1468}{9} : -\frac{6970}{27} a + \frac{63934}{27} : 1\right)$
Height \(1.1995064228192495974389115714930576817\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.1995064228192495974389115714930576817 \)
Period: \( 12.177912944252077591954427562829108336 \)
Tamagawa product: \( 3 \)  =  \(1\cdot3\)
Torsion order: \(1\)
Leading coefficient: \( 5.0517685569240506195217562178626452917 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-6a+55)\) \(5\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)
\((6a+49)\) \(5\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3Nn

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 25.1-b consists of this curve only.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.