Properties

Label 2.2.301.1-20.2-b1
Base field \(\Q(\sqrt{301}) \)
Conductor norm \( 20 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{301}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 75 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-75, -1, 1]))
 
gp: K = nfinit(Polrev([-75, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-75, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}={x}^{3}+a{x}^{2}+\left(20679016a-189722963\right){x}+150818140823a-1383707543744\)
sage: E = EllipticCurve([K([0,1]),K([0,1]),K([0,0]),K([-189722963,20679016]),K([-1383707543744,150818140823])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([0,1]),Polrev([0,0]),Polrev([-189722963,20679016]),Polrev([-1383707543744,150818140823])], K);
 
magma: E := EllipticCurve([K![0,1],K![0,1],K![0,0],K![-189722963,20679016],K![-1383707543744,150818140823]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((12a+98)\) = \((2)\cdot(6a+49)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 20 \) = \(4\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((48a+392)\) = \((2)^{3}\cdot(6a+49)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -320 \) = \(-4^{3}\cdot5\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{5031337703}{40} a - \frac{4616081049}{4} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0 \le r \le 1\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0 \le r \le 1\)
Regulator: not available
Period: \( 5.0499998035320635549141766636242166067 \)
Tamagawa product: \( 1 \)  =  \(1\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 6.7037667580958430764584196637874302788 \)
Analytic order of Ш: not available

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2)\) \(4\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)
\((6a+49)\) \(5\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 20.2-b consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.