Properties

Label 2.2.29.1-676.2-k1
Base field \(\Q(\sqrt{29}) \)
Conductor norm \( 676 \)
CM no
Base change no
Q-curve yes
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{29}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 7 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-7, -1, 1]))
 
gp: K = nfinit(Polrev([-7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-7, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-33a-75\right){x}-233a-514\)
sage: E = EllipticCurve([K([1,0]),K([1,1]),K([0,1]),K([-75,-33]),K([-514,-233])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([1,1]),Polrev([0,1]),Polrev([-75,-33]),Polrev([-514,-233])], K);
 
magma: E := EllipticCurve([K![1,0],K![1,1],K![0,1],K![-75,-33],K![-514,-233]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-10a-2)\) = \((2)\cdot(a-5)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 676 \) = \(4\cdot13^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-17440a-22416)\) = \((2)^{4}\cdot(a-5)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1235663104 \) = \(4^{4}\cdot13^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1030301}{16} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-3 a + 26 : 42 a - 106 : 1\right)$
Height \(2.8597232832162702358606771581161616869\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 2.8597232832162702358606771581161616869 \)
Period: \( 1.0874915516271187807046797300492729617 \)
Tamagawa product: \( 4 \)  =  \(2^{2}\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 4.6199884636680301794414422048131980320 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2)\) \(4\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((a-5)\) \(13\) \(1\) \(I_0^{*}\) Additive \(1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5B.4.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5.
Its isogeny class 676.2-k consists of curves linked by isogenies of degree 5.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.