Properties

Label 2.2.29.1-441.1-d1
Base field \(\Q(\sqrt{29}) \)
Conductor norm \( 441 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{29}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 7 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-7, -1, 1]))
 
gp: K = nfinit(Polrev([-7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-5a-8\right){x}+16a+34\)
sage: E = EllipticCurve([K([0,0]),K([-1,1]),K([1,1]),K([-8,-5]),K([34,16])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([-1,1]),Polrev([1,1]),Polrev([-8,-5]),Polrev([34,16])], K);
 
magma: E := EllipticCurve([K![0,0],K![-1,1],K![1,1],K![-8,-5],K![34,16]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((21)\) = \((-a)\cdot(a-1)\cdot(3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 441 \) = \(7\cdot7\cdot9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-1701a)\) = \((-a)^{2}\cdot(a-1)\cdot(3)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -20253807 \) = \(-7^{2}\cdot7\cdot9^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{4947968}{11907} a + \frac{3407872}{3969} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(1 : a + 3 : 1\right)$
Height \(0.30673899214066635415432436792708898931\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.30673899214066635415432436792708898931 \)
Period: \( 14.528860785290566418873301789883188433 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 3.3102556923255685707334039558945876728 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(7\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)
\((a-1)\) \(7\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((3)\) \(9\) \(1\) \(I_{5}\) Non-split multiplicative \(1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 441.1-d consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.