Base field \(\Q(\sqrt{29}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x - 7 \); class number \(1\).
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-7, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^2 - x - 7)
gp (2.8): K = nfinit(a^2 - a - 7);
Weierstrass equation
magma: E := ChangeRing(EllipticCurve([1, 0, 0, -39, 90]),K);
sage: E = EllipticCurve(K, [1, 0, 0, -39, 90])
gp (2.8): E = ellinit([1, 0, 0, -39, 90],K)
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
\(\mathfrak{N} \) | = | \((21)\) | = | \( \left(3\right) \cdot \left(-a\right) \cdot \left(a - 1\right) \) |
magma: Conductor(E);
sage: E.conductor()
| ||||
\(N(\mathfrak{N}) \) | = | \( 441 \) | = | \( 7^{2} \cdot 9 \) |
magma: Norm(Conductor(E));
sage: E.conductor().norm()
| ||||
\(\mathfrak{D}\) | = | \((45927)\) | = | \( \left(3\right)^{8} \cdot \left(-a\right) \cdot \left(a - 1\right) \) |
magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
| ||||
\(N(\mathfrak{D})\) | = | \( 2109289329 \) | = | \( 7^{2} \cdot 9^{8} \) |
magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
| ||||
\(j\) | = | \( \frac{6570725617}{45927} \) | ||
magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
| ||||
\( \text{End} (E) \) | = | \(\Z\) | (no Complex Multiplication ) | |
magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
| ||||
\( \text{ST} (E) \) | = | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank not available.magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()
Regulator: not available
magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())
Torsion subgroup
Structure: | \(\Z/8\Z\) |
---|---|
magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
| |
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
| |
Generator: | $\left(-3 : 15 : 1\right)$ |
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[3]
|
Local data at primes of bad reduction
magma: LocalInformation(E);
sage: E.local_data()
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\( \left(-a\right) \) | \(7\) | \(1\) | \(I_{1}\) | Non-split multiplicative | \(1\) | \(1\) | \(1\) | \(1\) |
\( \left(a - 1\right) \) | \(7\) | \(1\) | \(I_{1}\) | Non-split multiplicative | \(1\) | \(1\) | \(1\) | \(1\) |
\( \left(3\right) \) | \(9\) | \(8\) | \(I_{8}\) | Split multiplicative | \(-1\) | \(1\) | \(8\) | \(8\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 4 and 8.
Its isogeny class
441.1-c
consists of curves linked by isogenies of
degrees dividing 8.